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Abstract

In many instances, the social value of an innovation is much larger than the

profits that a firm can obtain by selling the innovation on the market. When

this is the case, a research contest can help align incentives and increase welfare.

This paper examines the optimal design of research contests when the objective

of the contest designer is the discovery and broad adoption of socially valuable

innovations. We show that the contest designer benefits from conditioning the size

of the prize on the market performance of the winner. The optimal contest features

two quantity cutoffs and two prize levels. The low prize is awarded if the winner

sells a quantity greater than the first cutoff while the high prize is awarded if the

winner sells a quantity greater than the second cutoff.
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1 Introduction

Much of innovative activity is driven by the desire of firms to improve their competitive

position on the market. However, for many innovations the social value vastly surpasses

any private value that could be captured on the market. This is the case for any innovation

aimed at alleviating a negative externality. For example, overprescription of antibiotics

could in the long term result in bacteria that are resistant to antibiotics. However, an

individual patient would have a low willingness to pay for a test that would reduce the

probability of such an outcome. Similarly, energy production creates pollution which is

not internalized by the final consumers, hence they are less willing to pay for innovations

which would make their automobiles and refrigerators more energy-efficient.

In cases like these, society can promote the beneficial innovation by holding an

innovation contest. The examples above come from actual innovation contests – the

2015 Better Use of Antibiotics Prize, 2007 Automotive X Prize, and the 1992 Super-

Efficient Refrigerator Prize (SERP) offered substantial monetary rewards in order to

induce innovation in their targeted fields. One drawback of innovation contests is that

the contestants will tailor their innovations to be appealing to the contest sponsors and

not to the final consumers. This could end up hurting the contest sponsors as then

the innovations produced by the contest remain unused. The organizers of the 2007

Automotive X Prize were aware of this issue, as the following statement from one of the

Prize organizers reveals:

“There are lots of competitions to make hyper-efficient cars – but often they

look like rolling coffins. [...] We wanted a focus on consumer desirability.”1

They tried to correct for this by instructing their expert jury to consider “consumer

desirability” when judging contestants. However it is doubtful that a jury could evaluate

accurately something like “consumer desirability.” In fact, the contestants often have

a better idea of what the consumers want than the contest sponsors do. Executives of

Whirlpool, which won the 1992 SERP contest, were worried that the contest sponsors

were misjudging the consumer sentiment: “[Contest sponsors] seemed to believe that

consumers would flock to energy-efficient refrigerators even thoughWhirlpool’s experience

showed that wasn’t true.”2

An alternative would be to try to rely on some objective measure to judge contes-

tants. Still, capturing the utility of an innovation with an objective measure is notoriously

difficult. As a striking example, Netflix never used the winning algorithm of its $1 million

contest because of the engineering costs – which were not part of the objective measure.3

1Cited in Murray, Stern, Campbell, and MacCormack (2012).
2See Treece J.B. (1993, July 5). The great refrigerator race. Businessweek.

https://www.bloomberg.com/news/articles/1993-07-04/the-great-refrigerator-race.
3See Johnston, C. (2012, April 13). Netflix never used its $1 million algorithm due to engineering costs.
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The sponsors of the 1992 SERP had a different idea – instead of trying to guess or

measure product desirability, they gave the contestants an incentive to deliver products

which will be desirable to consumers. Namely, in the 1992 SERP contest, the prize for

the winner depended on the number of refrigerators sold. The contest winner, Whirlpool,

received around $120 from the contest sponsors for each refrigerator of the winning type

sold, with a maximum of $30 million in total (Gillingham, Newell, and Palmer, 2004).

Given such a prize scheme, Whirlpool had an incentive to develop a refrigerator that

would both meet the requirements of the sponsors (in order to win the contest) and be

desirable to consumers (in order to maximize the size of the payoff).

Offering a per-unit-subsidy is one specific (and ad hoc) way to design such a con-

test. The objective of this paper is to systematically analyze settings as above (where

a sponsor wants to incentivize innovation, but the payoff of the sponsor is only realized

if the consumers adopt the innovation) and to characterize the optimal contest. To do

so, we develop a model with two possible innovations – a desirability innovation and an

externality innovation. Consumers are heterogeneous. One group of the consumers values

only the desirability innovation while a second, smaller group values only the externality

innovation. Firms choose how they direct their research efforts, either focusing on one of

the two possible innovations, or – in an attempt to develop a product that will appeal to

both groups – splitting their research efforts in both directions. A laissez-faire environ-

ment will in general be inefficient, because the firms will tend to focus on the desirability

innovation, which is appealing to the larger consumer group.

However, there is a principal who wishes to incentivize discovery and broad distri-

bution of the externality innovation and for that end commits to a research contest. The

winner of the contest will be the firm that discovers the externality innovation, but the

size of the prize may depend on the number of units that the winning firm sells on the

market. The contest design is exactly the design of a function which maps the number of

units sold into a prize that the principal pays. This is a flexible setting, which includes

all contests where the firm which discovers the externality innovation gets a fixed prize,

but it also includes a per-unit subsidy as in the SEMP contest and many other contest

formats.

A standard fixed-prize contest is in general suboptimal. While it can provide incen-

tives for firms to focus on the externality innovation, it cannot reliably provide incentives

for firms to attempt to discover both innovations, which is necessary for broad adoption

of products featuring the externality innovation. In addition, a fixed-prize contest is sub-

optimal because it does not incentivize the winner to expand the supply of the winning

product. A fixed-prize contest is an example of a research contest where the prize does

not depend on the market outcomes. Broadly, our results show that this class of research

Ars Technica. https://arstechnica.com/gadgets/2012/04/netflix-never-used-its-1-million-algorithm-due-
to-engineering-costs.
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contest is inefficient and that market-bound research contests can perform better.

We show that the optimal contest belongs to the class of two-cutoff contests. A two-

cutoff contests feature two prize levels. If the winner sells at least the quantity specified

by the first cutoff, a smaller prize is paid. If the winner manages to sell the quantity

specified by the second cutoff, then the larger prize is awarded. The second cutoff provides

incentives for the research aimed at discovery of both innovations, because the cutoff is

set in such a way that only a product that appeals to both groups of consumers can sell

in sufficient numbers. The first cutoff plays a different role. Even if a firm attempts

to discover both innovations, it might by chance fail to do so. As our results show, if

the first prize is below a certain threshold value, it can increase the expected payoff of

pursuing both innovations without inducing the firm to over-specialize and produce a

“rolling coffin.” As our result shows, by optimally choosing the two cutoffs and the two

prize levels, the principal achieves the optimum.

Our results have clear implications for the design of research contests. We demon-

strate the benefits of market-bound research contests for innovations that features sig-

nificant externalities and that can be quickly commercialized if discovered. Examples of

such innovations include more fuel-efficient vehicles and appliances, tests for the need to

use antibiotics, and improvements in the vaccine formulation, storage and transportation

technology, to name a few. We furthermore show that the optimum can be achieved with

a simple two-cutoff contest, which can be straightforwardly implemented and explained

to the contestants. Their simplicity also makes two-cutoff contests credible, as a court

of law can verify whether the quantities sold meet the threshold requirements, making it

difficult for the principal to renege of the promise to pay the prize.

2 Related literature

The seminal paper analyzing static innovation contests is Che and Gale (2003). They

show that a mechanism resembling a scoring auction is optimal and stress the optimality

of limiting the number of participants. Dong, Fu, Serena, and Wu (2024) also show that

including only the top two firms is optimal if firms are heterogeneous and the organizer

can collect entry fees and re-allocate research resources, thus adjusting the degree of

heterogeneity. Terwiesch and Xu (2008) argue that a larger number of contestants can

be beneficial, because it results in a larger set of proposed solutions, while Koh (2017)

shows that the optimal number of participants might depend on the how uncertain the

project qualities are: two participants for low uncertainty and multiple participants for

high uncertainty. Regarding the reward size, Erkal and Xiao (2021) show that the optimal

prize might depend on how scarce the high-quality ideas are. Schöttner (2008) shows that

when innovation process is stochastic, a fixed-prize tournament can outperform a scoring

auction.
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An important feature, which is prevalent in research contests and which has been

a subject of studies, is the variety and diversity of approaches and ideas. Letina and

Schmutzler (2019) study the effects of contest design on the variety of approaches to

innovation. They find that the fixed-prize tournaments do not provide incentives for

differentiation, unlike scoring auctions which can implement optimal diversity. Letina

and Schmutzler (2019) also show that the bonus tournament is optimal in this setting.

In a similar setting, but when the firms are initially technologically diverse, Protopappas

and Rietzke (2023) show that fixed-prize tournaments achieves the first-best outcome,

if firms are equally flexible. Rank-order contests avoids the distortions, which might

arise under fixed-prize tournaments with heterogeneous firms’ flexibility. Carnehl and

Schneider (2024) show that when the direction of scientific questions is chosen sequentially

by a stream of researches, ideas might be not studied deeply enough. This distortion can

be corrected, if a principal could choose the initial two directions far apart enough, so that

the future researchers would be incentivized to “bridge the gap” in the knowledge. In a

setting where diverse technologies can all lead to the same result when successful, Block

(2023) stresses the importance of rewards, tailored to the specific approaches. Lemus and

Temnyalov (2024) study the information design in a setting, where contestants might

choose different research directions.

Dynamic innovation contests are analyzed in Taylor (1995). His main result is that

in a fixed-price tournament each contestant does research until he reaches a certain indi-

vidual threshold. This is clearly inefficient, as individual contestants exert costly effort

even when a good innovation is already available. Benkert and Letina (2020) show that

this inefficiency can be resolved by using an interim-prize contest. Halac, Kartik, and Liu

(2017) study innovation contests in bandit settings, where learning is crucial. They find

that revealing the winners only after multiple successes can be optimal because it pre-

vents the contestants from becoming too pessimistic too soon.4 Chen, Chen, and Knyazev

(2022) and Chen and Liu (2024) also study information disclosure in the dynamic con-

tests but without fundamental uncertainty of the success possibility. Chen et al. (2022)

show the optimality of an immediate public announcement of a successful submissions

under endogenously chosen prize. Chen and Liu (2024) study a similar environment in

the presence of a leader, who has to make a single breakthrough, and a chased, who needs

two breakthroughs.

The emergence of online innovation platforms has enabled researchers to study in-

novation contests empirically. Using data on software contests, Boudreau, Lacetera, and

Lakhani (2011) and Boudreau, Lakhani, and Menietti (2016) show that increasing the

number of contestants in general benefits the principal, because it tends to increase the

chances of a high-quality outcome. Using data on prediction contests, Lemus and Mar-

shall (2021) show that information revelation is very important. Namely, revealing the

4See also Bimpikis, Ehsani, and Mostagir (2019).
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current standing in the contest (with some noise) benefits the principal. Connecting em-

pirical study with the contest dynamics, Lemus and Marshall (2022) study the benefits

of contingent prizes in dynamic settings. Combining the prediction contests data with

lab experiments, they show how competition organizers can benefit from using score- and

time-contingent prize structures. In our model, we also show the importance of contin-

gent prize structures, albeit from a theoretical view. Finally, using a novel method to

calculate originality, Gross (2020) studies the effect of competition on creativity in online

logo contests.

Finally, the goal of this paper is to study the optimal contest design when both

the innovation and the product market outcomes are taken into account. Both elements

are present in Che, Iossa, and Rey (2021), Galasso, Mitchell, and Virag (2018), and

Chari, Golosov, and Tsyvinski (2012). Che, Iossa, and Rey (2021) study the use of prizes

and contracts to both induce innovation and then implement the innovation. The main

concern there is that innovators have private information regarding their implementation

costs. Galasso, Mitchell, and Virag (2018) compare contests in which participants receive

a prize without a patent, a patent without a prize, and both a prize and a patent, and

show how awarding both a prize and a patent can be beneficial if research direction

and market performance are taken into account. Chari, Golosov, and Tsyvinski (2012)

suppose that the innovator receives signals about the quality of innovation, and can

potentially manipulate the signals. In our paper, the main concern is that innovators will

select research direction which is more likely to be positively evaluated by the principal

and not the direction which will deliver a marketable good.

Also related are Kremer (2000a) and Kremer (2000b) who propose offering subsidies

for the sales of vaccines in developing countries (an instrument known as Advanced Mar-

ket Commitment). Such subsidies in effect increase the market value of an innovation.

Kremer et al. (2022) study the AMC formally in the context of a firm, developing a new

vaccine which would benefit a government, with the development sponsored by a third

party. A prevalent holdup problem can lead to the inefficiently low quantity of vaccine.

Optimal design of an AMC helps to solve this holdup problem. When the vaccine devel-

opment is close to completion, the shape of AMC-incentives is crucial for efficient supply

quantity. In that case, similarly to results in our paper, Kremer et al. (2022) find that an

AMC that makes the payment contingent only on meeting the quantity requirement al-

lows to achieve efficient production. Our paper complements Che, Iossa, and Rey (2021),

Galasso, Mitchell, and Virag (2018), Chari, Golosov, and Tsyvinski (2012) and the lit-

erature on AMCs by examining how the right kind of research direction can be induced

with the use of a market-bound innovation contest.
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3 The Model

Firms. There are two ex-ante symmetric firms i ∈ {1, 2} that can innovate. Two types

of innovations can be discovered in this product market. In line with the main motivating

examples, we will refer to one innovation type as desirability innovation and the other as

externality innovation.

Each firm possesses some research capacity that it can direct towards search for the

desirability innovation, towards search for the externality innovation, or it can divide

the research effort and search for both innovation types. We will denote these three

innovation strategies as DD, EE and DE, so that the innovative activity choice by the

firms is a ∈ {DD,EE,DE}. Let the tuple (d̄i, ēi) ∈ {0, 1}2 capture the outcome of firm

i’s innovation strategy, so that d̄i = 1 implies that firm i has discovered the desirability

innovation, d̄i = 0 implies that it has not, with analogous notation for the externality

innovation.

Conditional on the firm’s decision, nature determines whether the particular inno-

vation is successful or not. We assume that if the firm chooses DD the outcome is

(d̄i, ēi) =

(1, 0), with probability p,

(0, 0), with probability 1− p.

Similarly, if the firm chooses EE, the outcome is

(d̄i, ēi) =

(0, 1), with probability p,

(0, 0), with probability 1− p.

Finally, if the firm decides to invest into both the externality and desirability innovations,

so that a = DE, the outcome is

(d̄i, ēi) =



(1, 1), with probability q2,

(1, 0), with probability q(1− q),

(0, 1), with probability q(1− q),

(0, 0), with probability 1− 2q + q2.

We assume that p > q. This assumption reflects the fact that it is usually more com-

plicated to achieve a success when pursuing multiple research directions than when the

focus is on a single research objective. We normalize the cost of any research activity a

to 0.

We assume that both innovations are patentable. If a single firm discovers the inno-

vation, it receives the patent for sure. If both firms discover the innovation, they receive

the patent with an equal probability. A firm which does not discover the innovation
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cannot receive the patent. The patents that a firm i holds describe that firm’s type

ti ∈ T = {d, e, de,∅}, where ti = d denotes a firm with a desirability patent, ti = e a

firm with an externality patent, ti = de a firm with both patents and ti = ∅ a firm with

no patents.

After the patents have been allocated, they become common knowledge. Afterwards,

the firms simultaneously choose a single per-unit price for their products. The marginal

production costs are normalized to zero.

Consumers. There is a unit mass of potential buyers. Each consumer can only buy

one unit from one of the firms, or buy nothing at all. The consumers are heterogeneous

in two dimensions, the vertical and the horizontal. Vertically, consumers differ in θ,

their willingness to pay for a unit of quality. Denote by Θ all the possible values of

willingness to pay in the population of consumers. Horizontally, consumers differ in what

they perceive as quality: one group of consumers only values the desirability innovation,

while the other, mutually exclusive group, only values the externality innovation. Label

the former group δ, and the latter ε. Denote the horizontal component of the consumer’s

type by η ∈ {δ, ε}. Thus, the type of the consumer is characterized by (θ, η) ∈ Θ×{δ, ε}.
Suppose that a firm i charges some price ρi for its product. Then, the utility of a

consumer with the type (θ, δ) from buying the product from this firm is

U(i|θ, δ) = θ × I{ti=d∨ti=de} − ρi.

Similarly, the utility of a consumer with the type (θ, ε) from buying this product is

U(i|θ, ε) = θ × I{ti=e∨ti=de} − ρi.

We assume that the willingness to pay, θ, and the horizontal component, η, are in-

dependently distributed. Further, we assume that Θ = [0, 1], θ ∼ U[0,1], and that

P{η = δ} = md. The latter condition simply means that the mass of the sub-population,

who value the desirability feature, is md, with the rest of the population valuing the

externality feature. We will assume that md > 1/2. That is, the desirability innovation

is valued by the majority of the population of consumers.

Contest design. There is a principal who can organize a research contest by com-

mitting to transfer a monetary reward to the firm that acquires the externality patent.

The principal has an exogenously fixed maximal budget B > 0.

In line with the motivating examples, we assume that the quantity sold by either firm

is observable and contractible. This enables the principal to commit not only to award a

fixed prize to the contest winner, but to condition the prize on the market performance

of the winner. Formally, a market-bound contest is a contract in which the principal

commits to reward a firm which holds the patent to the externality innovation according
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to a non-decreasing reward function

b : [0, 1] → [0, B] .

That is, if firm i obtains the patent to the externality innovation and sells Q ∈ [0, 1] units,

then the principal commits to pay b(Q) to firm i. This formulation allows a fixed-prize

innovation contest, where a fixed prize is paid to the winner of the contest, but it also

allows for richer structures with the possibility that the prize depends on the market

performance of the winning firm.

For example, if b(Q) = P for all Q ∈ [0, 1], then we have a fixed prize contest with

the prize P . An alternative contest would be a per-unit subsidy, where b(Q) = sQ for

some s > 0. That is, the principal commits to paying a subsidy s for each unit sold by

the winning firm. Note that the reward function b need not be continuous. One example

is a contest where the winner must sell at least some quantity Z > 0 in order to obtain

a fixed prize P :

b(Q) =

0, if Q < Z,

P, if Q ≥ Z.

As these examples show, the space of market-bound contests is very rich, as each

reward function b results in a different market-bound contest. As will be shown later,

the ability of the principal to condition the prize value on the market performance of the

winner will be useful.

Given a contest reward function b, we can write the payoffs of the firms as follows.

If a firm holds a patent t and a sets a price ρ ∈ [0, 1], then that firm’s payoffs are

π(ρ|t, b) =md(1− ρ)ρI{t=d}+

[(1−md)(1− ρ)ρ+ b((1−md)(1− ρ))] I{t=e}+

[(1− ρ)ρ+ b(1− ρ)] I{t=de}.

Let ρ∗(t, b) be a price which maximizes π(ρ|t, b). Taking into account the move by nature,

denote with P(ti, tj|ai, aj) the probability that the subgame with patent allocations (ti, tj)

is reached and let

P(ti|ai, aj) =
∑
tj∈ T

P(ti, tj|ai, aj).

Then, the expected payoff of firm i, when it chooses research strategy ai when the oppo-
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nent is choosing aj is

Πi(ai, aj) =
∑
ti∈T

P(ti|ai, aj)πi(ρ
∗(ti, b|ti, b).

If a∗1 and a∗2 are mutual best responses for Π1 and Π2, then (a∗1, ρ
∗
1(.), a

∗
2, ρ

∗
2(.)) constitute a

subgame perfect Nash Equilibrium (SPNE). Throughout, we will focus on pure strategy

SPNEs.

Timeline. We can summarize the timeline as follows.

Period 0:

– Nature randomly and privately determines the success of research activities

and the allocation of patents.

Period 1:

– The principal commits to a contest reward function b.

Period 2:

– Firms simultaneously choose the innovation activity ai and aj.

– The actions taken by Nature and both firms become public knowledge.

– Patents are allocated and firm types ti and tj are realized.

Period 3:

– Firms simultaneously choose prices ρi and ρj.

– Payoffs are realized.

4 Optimal contest

The problem of fining the optimal contest in this setting is in general challenging, because

it would involve optimizing the designers objective function over the set of all admissible

functions b. However, as our results in the Section 4.1 show, we can, with minimum loss

of generality, focus on a class of much simpler contests, which we call two-cutoff contests.

In the following subsection we then apply this result to find the optimal contest when

the designers objective is to minimize the budget needed to induce the firms to pursue

both innovations.
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4.1 Optimality of two-cutoff contests

A two-cutoff contest is defined by: (i) two quantity cutoffs QI and QII where 0 ≤ QI ≤
QII ≤ 1, (ii) two prize levels ZI and ZII where 0 ≤ ZI ≤ ZII ≤ B, and (iii) a reward

function btc, where

btc(Q) =


0, if Q ∈ [0, QI),

ZI , if Q ∈ [QI , QII),

ZII , if Q ⩾ QII .

That is, in a two-cutoff contest there are two potential prizes: a smaller prize ZI and a

larger prize ZII . To qualify for the smaller prize, the winner of the contest has to sell at

least QI units. To qualify for the larger prize, the winner has to sell at least QII units.

Optimizing over the set of two-cutoff contests is significantly easier than optimizing

over arbitrary market-bound contests. Instead of having to specify an entire function b,

the problem of finding the optimal two-cutoff contest boils down to the choice of four

real-valued variables: QI , QII , ZI , and ZII .

Moreover, as our next result shows, limiting the attention to two-cutoff contests is –

for essentially all plausible objectives of the principal – without loss.

Proposition 1 (Optimality of two-cutoff contests).

Fix any contest, any SPNE of that contest (a∗1, ρ
∗
1(), a

∗
2, ρ

∗
2()), and any pricing function

ρ̂(t) such that ρ̂(t) ∈ {ρ∗1(t), ρ∗2(t)} for all t ∈ T . Then, there exists a two-cutoff contest

with an SPNE (atc1 , ρ
tc
1 (), a

tc
2 , ρ

tc
2 ()) such that:

(i) atc1 = a∗1 and atc2 = a∗2;

(ii) ρtc1 (t) = ρtc2 (t) = ρ̂(t) for all t ∈ T .

In the appendix, we provide a constructive proof. To understand the proposition,

first note that the only restriction on what can be implemented with a two-cutoff contest

(relative to what can be implemented with an arbitrary contest) is that the pricing

behavior of firms has to be symmetric, i.e. ρtc1 () = ρtc2 (). If it happens that in the

arbitrary contest the pricing behavior is already symmetric, i.e., that ρ1(t) = ρ2(t) for all

t = T , then an immediate corollary of Proposition 1 is that such an equilibrium can be

implemented in a two-cutoff contest. As the proof of the proposition shows, the pricing

behavior of firms will be symmetric whenever the contest reward function b is such that

π(ρ|t, b) has a unique maximizer.

If, for some t, the equilibrium pricing behavior is not symmetric, so that ρ1(t) ̸= ρ2(t),

the argument above implies that both firms are indifferent between ρ1(t) and ρ2(t), so that

the principal can design a two-cutoff contest that implements either ρ1(t) or ρ2(t). Thus,

as long as the objective of the principal does not depend on the asymmetry of pricing
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behavior of firms (which will be the case whenever the principal’s payoff only depends

on the realized innovation and quantities sold), then the set of optimal contests for the

principal will always include a two-cutoff contest. In other words, in most reasonable

situations it will be without a loss to focus only on two-cutoff contests. In particular,

this will be the case for both objectives that we will examine below.

To understand why the proposition is true, suppose that we start with some arbitrary

contest reward function b. Note that there can be two “types” of firms which can win

the contest – either the firm with the patent t = e or the firm with the patent t = de.

Once a firm wins a contest, it then optimally chooses the price which maximizes either

π(ρ|e, b) or π(ρ|de, b). Call these prices ρ∗(e) and ρ∗(de) and let the quantities that the

firm sells at those prices be QI and QII . Now consider a two-cutoff contest where the

quantity cutoffs are exactly QI and QII and rewards for reaching the cutoffs are the same

as in the initial contests, that is, b(QI) and b(QII). A firm which wins this two-cutoff

contest then optimally chooses to set prices equal to ρ∗(e) and ρ∗(de), depending on

which patent it holds. There can not be a profitable deviation from these prices, because

if there were, it would also be a profitable deviation in the initial contest with the reward

function b, which is not the case. Thus, with the caveat on asymmetric pricing strategies

discussed previously, anything that can be implemented with an arbitrary contest can

also be implemented with a two-cutoff contest.

A two-cutoff contest suffices (and not three- or four-cutoff contest) exactly because

there are only two firm types which can win the contest. If there were more possible

winner types, then more cutoffs would be needed for the result to hold. At the same

time, this argument suggests that this result would hold in a model with more than two

firms, with a continuous choice of research direction, and with more than two groups of

consumers.

Moreover, generally there will be many contests that implement equivalent outcomes.

The reason for this is that, starting from any two-cutoff contest, a small change in the

reward function btc, at points which are sufficiently away from the quantities QI and QII ,

will not result in a change of pricing behavior by the firms, because a marginal change in

the reward from the contest is not sufficient to compensate the firm for the lost market

profits caused by a change in pricing behavior.

4.2 Direction of innovation

Consider now a contest designer that is interested in “fixing” the direction of innovation

that firms choose. That is she would like the firms to pursue an innovation strategy

that can result in a product that solves the externality problem without being a “rolling

coffin.” In other words, the contest designer is interested in implementing an equilibrium

where both firms choose DE strategy in the first stage. This section has two goals. The
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first is to characterize the minimum budget B that the contest designer needs in order

to implement (DE,DE) as part of an equilibrium. The second is to examine whether

contests which do not condition on the market performance of the winner can be used as

a tool to incentivize firms to choose DE as their research strategy.

The nature of the innovation production technology turns out to play a key role.

We will differentiate between two cases. First, the case p > 2q, , which we refer to

as increasing returns to specialization. In this case, a firm which does not specialize

and chooses strategy DE will discover either innovation with probability q. If this firm

specialized instead (for example, by choosing strategy DD), this doubling of its efforts

towards the innovation d̄ would lead to a more than double increase in the probability

of discovering d̄, from q to p. The other case, p ≤ 2q features decreasing returns to

specialization. In this case, doubling of efforts by specializing in one direction results in a

less than two times higher probability of discovery. As our next result shows, these two

cases require different designs of innovation contests.

Proposition 2 (Minimal budget).

(i) If p > 2q, (DE,DE) is implementable iff B ≥ md(p−q(2−2q+q2))
2(2−q)q2

− 1
4
. A contest

implementing it is QI = 1−md

2
, QII = 1

2
, ZI = 2md−1

4
and ZII = md(p−q(2−2q+q2))

2(2−q)q2
− 1

4
.

(ii) If p ≤ 2q, (DE,DE) is implementable iff B ≥ mdp−q
4q

. A contest implementing it is

QI ≤ QII ≤ 1−md

2
and ZI ≤ ZII = max

{
mdp−q

4q
, 0
}
.

When p > 2q firms have an incentive to specialize, as specialization increases their

chances of discovering an innovation.5 To overcome this incentive, the contest designer

has to offer the firms a reward which can only be won if the firm in fact chose DE research

strategy. This can be done by conditioning the reward on the firm selling a quantity that

is only consistent with the firm holding the de patent and thus having a product which

appeals to the entire market. Optimally, this is QII = 1/2, the monopoly quantity of

the firm holding the de patent. The proposition then specifies ZII , the lowest prize (and

hence the minimum budget required) that incentivizes the firms to choose (DE,DE) –

and thus not to specialize – in equilibrium.

The above intuition does not explain why ZI , which represents the prize that the

firm with e patent wins, is positive. To understand this, suppose that ZI = 0 and that

ZII was such that (DE,DE) was an equilibrium, but that it would not be an equilibrium

after a marginal reduction in ZII . Lowering ZII makes deviations to both DD and EE

more desirable, but since md > 1/2 (the market for the good with the d patent is strictly

larger), deviations to DD are strictly more profitable than deviations to EE. Thus, a

marginal reduction in ZII makes only the deviation to DD profitable, while the deviation

5As our results in the Online Appendix B.1 show, firms choose either DD or EE in any equilibrium
when there is no contest and p > 2q.
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to EE remains unprofitable. An increase in ZI (which is awarded to the firms with the

e patent) makes deviations to DD less profitable, while making the deviations to EE

more profitable. Thus, starting from ZII > 0 and ZI = 0 it is always possible to slightly

increase ZI and decrease ZII while keeping (DE,DE) as an equilibrium. Such a contest

requires a strictly lower budget to be implemented, since ZI ≤ ZII ≤ B. This logic holds

until ZI = 2md−1
4

, which is the optimal ZI identified in the proposition.

When p ≤ 2q, inducing (DE,DE) is much more straightforward. If md ≤ q/p,

the sizes of the two markets are sufficiently similar and since specialization is inefficient,

(DE,DE) is an equilibrium without any intervention by the designer. In this case,

optimal prize is ZI = ZII = 0. When md > q/p, the only reason why (DE,DE) is

not an equilibrium is that the rewards from holding the patent e are not high enough.

This can be solved by simply increasing the rewards to holding the patent e, without any

need to condition on the market performance of the winning firm. Indeed, Proposition

2(ii) shows that not only can a standard fixed-prize contest be used to implement the

(DE,DE), but also that an optimal fixed-prize contest does so with the smallest required

budget. Thus, when p ≤ 2q, so that the innovation technology features decreasing returns

to specialization, then the “rolling coffins” problem mentioned in the introduction does

not arise. This is not the case when p > 2q (and the innovation technology features

increasing returns to scale), as our next result shows.

Proposition 3. Suppose that p > 2q. Then, given any fixed-prize contest, (DE,DE) is

not an equilibrium.

We already know from Proposition 2(i) that when the innovation technology fea-

tures increasing returns to specialization, the contest which implements (DE,DE) with

a minimal budget is a two-cutoff contest with two distinct prizes. Proposition 3 shows

that this result is even stronger: with increasing returns to scale, a fixed-prize contest

cannot implement (DE,DE), not only with the minimal budget but with any budget at

all. Thus, solving the “rolling coffins” problem requires conditioning of the contest prize

on the market performance of the winner – in other words, it requires that the contest

designer uses a market-bound research contest.

The principal economic insight from this section is that there is a fundamental differ-

ence between innovation technologies with increasing and decreasing returns to special-

ization – and that the optimal contest design will change depending on the technological

environment in which the desired innovation is supposed to be developed. When inno-

vation technology features decreasing returns to specialization, the problem is easier. To

incentivize the “right” direction of innovation, the designer needs to only increase the

rewards to the discovery of the desired innovation. This can be done with a simple fixed-

prize contest. However, when the innovation technology features increasing returns to

specialization, then relying on fixed-prize contests is not enough. At most, a fixed-prize
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contest will incentivize firms to pursue the development of “rolling coffins” as was the

case in the example from the introduction. To optimally direct the innovative efforts of

firms, the designer has to condition the size of the prize on the market performance of

the winner. This can be done with a simple two-cutoff contest. Moreover, if designed

optimally, such a contest implements the desired direction of innovation with the lowest

possible budget.

5 Conclusion

Research contests are a valuable policy tool, especially for incentivizing research into in-

novations that reduce negative externalities (or increase positive ones). Many innovations

share these features and indeed several past research contests, like the 2015 Better Use

of Antibiotics Prize, 2007 Automotive X Prize, and the 1992 Super-Efficient Refrigerator

Prize, are aimed at exactly such innovations. Standard research contests, where a fixed

prize is paid to a firm that successfully innovates (according to pre-specified criteria)

induce firms to search for an innovation that would appeal to the contest sponsor, but

not necessarily one that would be appealing to the broader consumer base. These are the

“rolling coffins” mentioned in the introduction.

We propose that contest organizers instead use market-bound research contests,

where the size of prize depends on the market performance of the winner. We show that

a simple contests – what we call a two-cutoff contest – is optimal. The presence of two

prize levels and two quantity cutoffs optimally aligns the incentives of the firms and the

contest designer.

One advantage of fixed-prize contests, and partly a reason for their popularity, is that

they are simple and transparent. A two-cutoff contest is not significantly more complex,

neither from the perspective of contest design not from the perspective of explaining the

rules to the contestants. Furthermore, it seems plausible that a court of law would be

able to enforce such a contest. Given the growing popularity of research contests, it

is important that sponsors and designers implement the designs which are optimal for

the problem at hand. We believe that market-bound contests generally, and two-cutoff

contests in particular, are a valuable addition to the set of tools that can be used to

induce research which is socially valuable but underappreciated by the marketplace.
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A Proofs

A.1 Proof of Proposition 1

Take any contest reward function b and any tuple (a1, ρ1, a2, ρ2) such that (a1, ρ1, a2, ρ2)

constitute an SPNE given b(), where (a1, a2) are first period actions and (ρ1, ρ2) are the

functions determining the second period prices.

Since ρ1 and ρ2 maximize π(ρi|ti, b), it must be that π(ρ1(t)|t, b) = π(ρ2(t)|t, b) for
all t ∈ T .

Let QI and QII be quantities such that QI ∈ {(1−ρ1(e))(1−md), (1−ρ2(e))(1−md)}
and QII ∈ {(1− ρ1(de)), (1− ρ2(de))}.

Lemma 1. QI ⩽ QII

Proof. Suppose not. Then QI > QII , which implies:

max{(1− ρ1(e))(1−md), (1− ρ2(e))(1−md)} > min{(1− ρ1(de)), (1− ρ2(de))}

min{ρ1(e), ρ2(e)} =: ρm(e) < ρm(de) := max{ρ1(de), ρ2(de)}.

Denote with ρ′ the solution to (1 − md)(1 − ρ′) = 1 − ρm(de). Note that a solution to

this equality always exists because by assumption QI > QII . Since ρm(e) is part of an

equilibrium and thus maximizes payoffs, the following must be true

(1−md)(1− ρm(e))ρm(e) + b((1−md)(1− ρm(e)) ⩾ (1− ρm(de))ρ
′ + b(1− ρm(de)).

(⋆)

Since (1−md)(1− ρ′) = 1− ρm(de), it is straightforward that

ρ′ < ρm(de). (⋆⋆)

Denote with ρ′′ the solution to (1− ρ′′) = (1−md)(1− ρm(e)). Again, since ρm(de)

is part of an equilibrium and thus maximizes payoffs

(1− ρm(de))ρm(de) + b(1− ρm(de)) ⩾ (1−md)(1− ρm(e))p
′′ + b((1−md)(1− ρm(e))).

(⋆ ⋆ ⋆)

Clearly, ρ′′ > ρm(e), so that (⋆ ⋆ ⋆) and (⋆) imply

(1− ρm(de))ρm(de) + b(1− ρm(de)) > (1− ρm(de))ρ
′ + b(1− ρm(de))

⇐⇒

ρm(de) > ρ′,
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which is a contradiction to (⋆⋆).

Next, let

bTC(Q) =


0, if Q < QI

b(QI), if QI ⩽ Q < QII

b(QII), else.

Consider strategies (aTC
1 , ρTC

1 , aTC
2 , ρTC

2 ), where aTC
i = ai and ρTC

1 (t) = ρTC
2 (t) = ρ̂(t) for

all t ∈ T , where ρ̂(t) ∈ {ρ1(t), ρ2(t)} for all t ∈ T . We will show that (aTC
1 , ρTC

1 , aTC
2 , ρTC

2 )

constitute an SPNE given bTC , which completes the proof of the proposition.

First, since π(ρ1(t)|t, b) = π(ρ2(t)|t, b), then, by construction,

π(ρi(t)|t, b) = π(ρTC(t)|t, bTC) for all t and i.

Second, since bTC(QI) = b(QI), bTC(QII) = b(QII) and b() is non-decreasing, then

bTC(Q) ⩽ b(Q) ∀q ∈ [0, 1].

This in turn implies that for any ρ and t,

π(ρ|t, b) ⩾ π(ρ|t, bTC).

Thus, if π(ρi(t)|t, b) are the maximal payoffs under contest b, then ρTC maximizes payoffs

under contest bTC in every subgame in the second period. Since payoffs in every subgame

in the second period are unchanged, then aTC
1 = a1 and aTC

2 = a2 maximize expected

payoffs in the first period. Thus, (aTC
1 , ρTC

1 , aTC
2 , ρTC

2 ) constitute a SPNE under bTC .

A.2 Proof of Proposition 2

By Proposition 1, if a contest implements (DE,DE), then there exists a two-cutoff

contests which also implements (DE,DE) and which does not require a higher budget to

do so. Thus, without loss of generality, we can focus on implementation with two-cutoff

contests.

Fix a two-cutoff contest btc with cutoffs and prizes (QI , QII , ZI , ZII) and suppose

for the moment that if a firm holds the patent e it indeed produces quantity QI while if

it holds the patent de it produces quantity QII . Also suppose that firm j chooses DE.

Then, the payoff of firm i from choosing research directions a ∈ {DE,DD,EE} is given
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by:

V (DE,DE) = P(d|DE,DE)
md

4
+ P(e|DE,DE)

(
QI

(
1− QI

1−md

)
+ ZI

)
+

+ P(de|DE,DE)
(
QII

(
1−QII

)
+ ZII

)
,

V (DD,DE) = P(d|DD,DE)
md

4
,

V (EE,DE) = P(e|EE,DE)

(
QI

(
1− QI

1−md

)
+ ZI

)
.

The probabilities of different patent allocations t ∈ {d, e, de}, given the choice of

research direction (ai, aj) are given by:

P(d|DE,DE) = q(1− q)
(
q(1− q) + 1− 2q + q2 +

q

2

)
+ q2

(
q(1− q)

2
+

q2

4

)
=

1

4
(2− q)q (2− (2− q)q) ,

P(e|DE,DE) = P(d|DE,DE),

P(de|DE,DE) = q2
(
1− 2q + q2 +

q(1− q)

2
+

q(1− q)

2
+

q2

4

)
=

q2(2− q)2

4
,

P(d|DD,DE) = p
(
q(1− q) + 1− 2q + q2 +

q

2

)
= p

(
1− q

2

)
,

P(e|EE,DE) = P(d|DD,DE).

Still assuming that a firm which holds the patent e produces quantity QI while if

it holds the patent de it produces quantity QII , we can write the problem of finding the

minimal budget needed to implement (DE,DE) as:

min
QI ,QII ,ZI ,ZII

ZII

s.t. V (DE,DE) ⩾ V (DD,DE)

V (DE,DE) ⩾ V (EE,DE)

QII ⩾ QI

ZII ⩾ ZI ⩾ 0.

Note that among all payoffs V , QII and ZII are only present in V (DE,DE), and that only

through the expression
(
QII

(
1−QII

)
+ ZII

)
. Thus minimizing ZII implies maximizing

QII
(
1−QII

)
, or in other words setting QII equal to the monopoly quantity for the firm

with the de patent. Further, QI and ZI only enter the constraints through the expression

18



(
QI

(
1− QI

1−md

)
+ ZI

)
, and the lowest payoff the firm with the e patent obtains is its

monopoly payoff. Hence, the largest range of values that
(
QI

(
1− QI

1−md

)
+ ZI

)
can take

is given by setting QI to the monopoly quantity and choosing ZI ∈ [0, ZII ]. It is also

clear that if QI and QII are set to monopoly quantities, then the firms will also have an

incentive to choose those quantities when they hold the patents e and de.

Setting QI and QII to monopoly quantities, we can rewrite the minimization problem

as:

min
ZI ,ZII

ZII

s.t. V (DE,DE) ⩾ V (DD,DE)

V (DE,DE) ⩾ V (EE,DE)

ZII ⩾ ZI ⩾ 0.

Substituting the monopoly profits ((1−md)/4 with patent e and 1/4 with patent de) and

the expressions for V from above we obtain:

min
ZI ,ZII

ZII

s.t.

1

4
(2− q)q (2− (2− q)q)

(
md

4
+

1−md

4
+ ZI

)
+

q2(2− q)2

4

(
1

4
+ ZII

)
⩾ p

(
1− q

2

) md

4
1

4
(2− q)q (2− (2− q)q)

(
md

4
+

1−md

4
+ ZI

)
+

q2(2− q)2

4

(
1

4
+ ZII

)
⩾ p

(
1− q

2

)(
1−md

4
+ ZI

)
ZII ⩾ ZI ⩾ 0.

This is a linear minimization problem.

For p < 2q, the minimization set can be restated as

ZII ⩾


mdp−2q(2−2q+q2)ZI−q

2(2−q)q2
, if ZI < mdp−q

4q
,

ZI , if ZI ∈
[
mdp−q

4q
, q−(1−md)p

4(p−q)

)
,

(1−md)p+2(2p−2q+2q2−q3)ZI−q
2(2−q)q2

, if ZI ⩾ q−(1−md)p
4(p−q)

,

and ZI ≥ 0.

Then, the minimum is achieved at ZI = max
{

mdp−q
4q

, 0
}
, and the minimum required

budget is the same: ZII∗ = max
{

mdp−q
4q

, 0
}
.
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For p ⩾ 2q, the restated minimization set can be written as

ZII ⩾


mdp−2q(2−2q+q2)ZI−q

2(2−q)q2
, if ZI < 2md−1

4
,

(1−md)p+2(2p−2q+2q2−q3)ZI−q
2(2−q)q2

, if ZI ⩾ 2md−1
4

.

The minimum is then achieved at ZI = 2md−1
4

, and is equal to ZII∗ = md(p−q(2−(2−q)q))
2(2−q)q2

− 1
4
.

Figure (1) illustrates the argument.

Figure 1: Budget minimization region and the minimum

(a) p ≥ 2q (b) p < 2q

A.3 Proof of Proposition 3

Notice that any fixed-prize contest can be represented as a two-cutoff contest with ZI =

ZII = Z∗. Consider the feasible set of prizes from the proof of Proposition 2. If some

fixed-prize contest could induce (DE,DE) as an equilibrium under p > 2q, it would hold

that

1

4
(2− q)q (2− (2− q)q)

(
md

4
+

1−md

4
+ Z∗

)
+

q2(2− q)2

4

(
1

4
+ Z∗

)
⩾ p

(
1− q

2

) md

4
,

1

4
(2− q)q (2− (2− q)q)

(
md

4
+

1−md

4
+ Z∗

)
+

q2(2− q)2

4

(
1

4
+ Z∗

)
⩾ p

(
1− q

2

)(
1−md

4
+ Z∗

)
,
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for some Z∗ ⩾ 0, or,

Z∗ ⩾
1

4

(
md

p

q
− 1

)
,

Z∗ ⩽
q − (1−md)p

4(p− q)
.

When p = 2q, both right-hand sides of the above inequalities become (1/2)(md − 1/2),

but when p > 2q, we have that 1
4
(md p/q−1) > q−(1−md)p

4(p−q)
, so the set of values for Z∗ that

would implement (DE,DE) as an equilibrium is an empty set.

Additionally, for some graphic intuition, we could consider the left panel of figure 1

from the proof of Proposition 2. There, the blue-shaded region is the set of pairs (ZI , ZII)

that support (DE,DE) as an equilibrium. This region lies above the line ZI = ZII , which

corresponds to the fixed-prize contest, and strictly above that line when p > 2q.
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B Online Appendix

B.1 Equilibria without a contest

In a game without a contest, and taking into account optimal pricing in all possible

subgames, the expected payoff of firm i which takes an action ai ∈ {DD,DE,EE},
given the action of the opponent j, is given in the following payoff matrix:

j

DD DE EE

i

DD 1
8
p(2− p)md

1
8
p(2− q)md p1

4
md

DE 1
8
q(2−md × p) 1

8
(2− q)q 1

8
q(2− p(1−md))

EE p
(
1
4
(1−md)

)
1
8
p(2− q)(1−md)

1
8
p(2− p)(1−md)

Table 1: Expected Payoff Matrix without a Contest.

Below, we first provide best replies to various actions of the opponent. Then, we

characterize the equilibria, first for the case p ≤ 2q, then for the case p > 2q.

B.1.1 Best replies

Lemma 2. (DD,DD) is an equilibrium if and only if md ≥ max

{
2q

p(2− p+ q)
,

2

4− p

}
.

Proof. Suppose that the firm j is playing DD. Then Πi(DD,DD) ≥ Πi(DE,DD) if and

only if

1

8
p(2− p)md ≥

1

8
q(2−md × p)

md ≥
2q

p(2− p+ q)
.

Similarly, Πi(DD,DD) ≥ Πi(EE,DD) if and only if

1

8
p(2− p)md ≥ p

(
1

4
(1−md)

)
md ≥

2

4− p
.

Thus, (DD,DD) is an equilibrium if and only if

md ≥ max

{
2q

p(2− p+ q)
,

2

4− p

}
.
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Lemma 3. DE is a best response to DD if and only if md ∈
[
2(p− q)

p(2− q)
,

2q

p(2− p+ q)

]
.

This interval is empty if p > 2q.

Proof. Suppose that the firm j is playing DD. Analogously to above Πi(DE,DD) ≥
Πi(DD,DD) if and only if

md ≤
2q

p(2− p+ q)
.

Similarly, Πi(DE,DD) ≥ Πi(EE,DD) if and only if

1

8
q(2−md × p) ≥ p

(
1

4
(1−md)

)
md ≥

2(p− q)

p(2− q)
.

To prove that the interval is empty if p > 2q, note that

∂

∂p

2(p− q)

p(2− q)
=

2q

p2(2− q)
> 0

∂

∂p

2q

p(2− p+ q)
= − 2q(−2p+ q + 2)

(−p2 + pq + 2p)2
< 0,

and
2(p− q)

p(2− q)

∣∣∣∣
p=2q

=
2q

p(2− p+ q)

∣∣∣∣
p=2q

.

Lemma 4. EE is a best response to DD if and only if md ≤ min

{
2(p− q)

p(2− q)
,

2

4− p

}
.

Proof. Suppose that the firm j is playing DD. Analogously to above Πi(EE,DD) ≥
Πi(DD,DD) if and only if

md ≤
2

4− p
.

Similarly, Πi(EE,DD) ≥ Πi(DE,DD) if and only if

md ≤
2(p− q)

p(2− q)
.

Lemma 5. DD is a best response to DE if and only if md ≥
q

p
. This condition is always

satisfied if p > 2q. EE is never a best response to DE.

23



Proof. Suppose that the firm j is playing DE. Then Πi(DD,DE) ≥ Πi(DE,DE) if and

only if

1

8
p(2− q)md ≥

1

8
(2− q)

md ≥
q

p
.

If p > 2q, then 1
2
> q

p
and since md >

1
2
, then md ≥ q

p
always holds. Next, Πi(DD,DE) ≥

Πi(EE,DE) if and only if

1

8
p(2− q)md ≥

1

8
p(2− q)(1−md)

md ≥
1

2
,

which holds by assumption.

Lemma 6. DD is a best response to EE if and only if md ≥
q(2− p)

p(2− q)
, which is always

satisfied for p > 2q. EE is never a best response to EE.

Proof. Suppose that the firm j is playing EE. Then Πi(DD,EE) ≥ Πi(DE,EE) if and

only if

1

4
pmd ≥

1

8
q(2− p(1−md))

2pmd ≥ q(2− p+ pmd)

md(2p− qp) ≥ q(2− p)

md ≥
q(2− p)

p(2− q)
.

To see that this expression is always satisfied for p > 2q, notice that
q(2− p)

p(2− q)
is decreasing

in p and equals
1− q

2− q
for p = 2q, which in turn is below 1/2 for all admissible values of

q. Next, Πi(DD,EE) ≥ Πi(EE,EE) if and only if

1

4
pmd ≥

1

8
p(2− p)(1−md)

2md ≥ 2− p− (2− p)md

md ≥
2− p

4− p
,

which is always satisfied since the fraction on the right is declining in p and equals 1/2

for p = 0.
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B.1.2 Equilibria when p ≤ 2q

Lemma 7. Suppose that p ≤ 2q and there is no contest. Then (DD,DD) is an equilib-

rium if and only if md ≥
2q

p(2− p+ q)
.

Proof. By Lemma 2, (DD,DD) is an equilibrium if and only ifmd ≥ max

{
2q

p(2− p+ q)
,

2

4− p

}
.

Since

2q

p(2− p+ q)
≥ 2

4− p

4q − pq ≥ 2p− p2 + pq

4q − 2pq ≥ 2p− p2

2q(2− p) ≥ p(2− p)

2q ≥ p,

given the assumption in the lemma
2q

p(2− p+ q)
= max

{
2q

p(2− p+ q)
,

2

4− p

}
.

Lemma 8. Suppose that p ≤ 2q and there is no contest. Then (DD,DE) is an equilib-

rium if and only if md ∈
[
max

{
q

p
,
2(p− q)

p(2− q)

}
,

2q

p(2− p+ q)

]
.

Proof. By Lemma 3, DE is a best response to DD if md ∈
[
2(p− q)

p(2− q)
,

2q

p(2− p+ q)

]
. By

Lemma 5, DD is a best response to DE if md ≥ q/p.

Lemma 9. Suppose that p ≤ 2q and there is no contest. Then (DD,EE) is an equilib-

rium if and only if md ∈
[
q(2− p)

p(2− q)
,
2(p− q)

p(2− q)

]
.

Proof. By Lemma 4, EE is a best response to DD if md ≤ min

{
2(p− q)

p(2− q)
,

2

4− p

}
. Since

2(p− q)

p(2− q)
≤ 2

4− p

(p− q)(4− p) ≤ p(2− q)

4p− 4q − p2 + pq ≤ 2p− pq

2p− 4q − p2 + 2pq ≤ 0

p(2− p)− 2q(2− p) ≤ 0

(2− p)(p− 2q) ≤ 0,

which always holds as p ≤ 2q, then EE is a best response to DD if md ≤ 2(p− q)

p(2− q)
. By

Lemma 6, DD is a best response to EE if md ≥
q(2− p)

p(2− q)
. This interval is not empty for

p ≤ 2q, for example, when q = 5/13 and p = 3/4.
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Lemma 10. (DE,DE) is an equilibrium if and only if p ≤ 2q and md ∈ (1
2
, q
p
].

Proof. Analogously to the above Πi(DE,DE) ≥ Πi(DD,DE) if and only if md ≤ q
p
,

which can only be satisfied if p ≤ 2q. Next, Πi(DE,DE) ≥ Πi(EE,DE) if and only if

1

8
(2− q)q ≥ 1

8
p(2− q)(1−md)

q ≥ p(1−md)

md ≥ 1− q

p
.

If p ≤ 2q, then 1
2
≤ q

p
, so that 1 − q

p
≤ 1

2
, which implies that md ≥ 1 − q

p
is always

satisfied.

Lemma 11. Suppose that p ≤ 2q and there is no contest. Then neither (DE,EE) nor

(EE,EE) are an equilibrium.

Proof. By Lemma 5 EE is never a best response to DE. By Lemma 6 EE is never a

best response to EE.

B.1.3 Equilibria when p > 2q

Lemma 12. Suppose that p > 2q and there is no contest. Then (DD,DD) is an equi-

librium if and only if md ≥
2

4− p
.

Proof. By Lemma 2, (DD,DD) is an equilibrium if and only ifmd ≥ max

{
2q

p(2− p+ q)
,

2

4− p

}
.

Since

2q

p(2− p+ q)
<

2

4− p

2q < p

given the condition p > 2q in the Lemma, then
2

4− p
= max

{
2q

p(2− p+ q)
,

2

4− p

}
.

Lemma 13. Suppose that p > 2q and there is no contest. Then (DD,EE) is an equilib-

rium if and only if md ∈
(
1

2
,

2

4− p

]
.

Proof. By Lemma 4, EE is a best response to DD if md ≤ min

{
2(p− q)

p(2− q)
,

2

4− p

}
.

Analogously to the proof of Lemma 9, we conclude that when p > 2q, EE is a best

response to DD if md ≤
2

4− p
. By Lemma 6, DD is always a best response to EE when

p > 2q.
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Lemma 14. Suppose that p > 2q and there is no contest. Then (DE,DD), (DE,DE),

(DE,EE) and (EE,EE) are never an equilibrium.

Proof. By Lemma 3, DE is never a best response to DD. By Lemma 10, (DE,DE) is

never an equilibrium if p > 2q. By Lemma 5 EE is never a best response to DE. By

Lemma 6 EE is never a best response to EE.
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