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1 Introduction

Many economic interactions can be summarized as situations where a group of agents
compete for a set of prizes. Examples of such contests are: (i) competition for promotions
or bonuses among employees, (ii) elections where candidates campaign in an effort to win
political office, (iii) entrance exams where students compete for a limited number of places
in schools and universities, (iv) scientists competing for grants and prizes, and (v) sporting
events. What all of these contests have in common is that they are designed. Some principal
chooses the rules of the contest as well as the prizes that can be won. While the equilibrium
behavior of agents in standard contests (Tullock contests, Lazear-Rosen tournaments, all-
pay contests) has been extensively studied, the question of optimal contest design has
received significantly less attention.1

Several recent articles have analyzed the optimal allocation of prizes in specific classes of
contests. Examples include Schweinzer and Segev (2012) and Fu, Wang, and Wu (2021a)
for Tullock contests, Drugov and Ryvkin (2020b) and Morgan, Tumlinson, and Várdy
(2022) for Lazear-Rosen tournaments, and Fang, Noe, and Strack (2020) and Olszewski and
Siegel (2020) for all-pay contests. While these papers have produced important insights,
sometimes the intuition obtained from one contest class does not translate well to a different
class. For example, from Schweinzer and Segev (2012) we learn that in a nested Tullock
contest with risk-neutral agents, a winner-take-all prize structure is optimal, while Fang
et al. (2020) show that in an all-pay contest the exact opposite is optimal, with all agents
but one receiving an equal positive prize. Furthermore, it is not clear if the principal should
use a Tullock contest or an all-pay contest, or even some other contest format which has
not been studied yet.2 Our paper proposes a general framework in which these contest
design questions can be analyzed, and which explains the different results in the literature.
In particular, we establish an upper payoff bound for the principal who optimally designs
a contest, and we provide sufficient conditions under which there exists a contest that
achieves this upper bound.

In our model, the principal can choose any prize profile and any rule specifying how
the prizes are allocated to the agents as a function of a possibly noisy signal about their
efforts. When the principal perfectly observes the efforts, then our framework includes
all the standard contest success functions (CSFs) as special cases. When the observation
of efforts is imperfect, then the observational noise puts constraints on the set of CSFs
that the principal can induce. The objective of the principal is to maximize the expected
aggregate effort minus the sum of prizes. The agents can be risk-neutral or risk-averse, and

1For an excellent textbook treatment of the standard contests, see Konrad (2009).
2A broader question is whether the principal should use a contest at all, rather than some other

incentive mechanism. One setting in which contests are optimal within a larger set of mechanisms is
provided in Letina et al. (2020). In their model, contests are optimal because they give a lenient reviewer
the commitment to punish shirking agents.
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they have convex effort cost functions.
Our first main result provides sufficient conditions for a contest to achieve our upper

payoff bound and thus be optimal, given an arbitrary observational structure. These con-
ditions are that the prize profile is minimally competitive, with n− 1 equal positive prizes
and a single zero prize, and that the CSF has an intermediate degree of competitiveness,
so that the off-equilibrium probability of winning a positive prize remains below an explic-
itly given bound for any effort deviation. The conditions can be easily verified and are a
powerful tool for the design of optimal contests under diverse observational assumptions.
The result builds on the previous work in Letina et al. (2020), who consider perfect effort
observation only. For that case, they show that the optimal prize profile has n − 1 equal
positive prizes and that the optimum can be achieved by an all-pay contest with a cap.
Our results here rely on the insight that there are many other CSFs that can also achieve
the optimum, and some of them are feasible for the principal even if effort observation is
imperfect.

For the case when efforts are indeed perfectly observable, our second main result shows
that, in addition to an all-pay contest with a cap, the optimum can also be achieved by a
nested Tullock contest (Clark and Riis, 1996). The optimal Tullock CSF is characterized
by a precision parameter r∗(n) which is the largest r such that a symmetric pure-strategy
equilibrium still exists. Note that we do not restrict ourselves to pure-strategy equilibria,
but they emerge as part of the optimum. The precision parameter r∗(n) increases in n and
approaches infinity in the limit. In other words, the optimal Tullock CSF approximates
the all-pay CSF when the number of agents is large, but is less competitive for smaller
numbers of agents. This result provides a unifying perspective on the findings in the
literature mentioned above. The message of Fang et al. (2020) is that “turning up the
heat” in a standard all-pay contest, by making the prize profile more unequal, increases the
dispersion of the equilibrium effort distributions and decreases the expected equilibrium
effort that agents exert. It follows that the principal should select the most equal prize
profile with n− 1 identical prizes, but the agents are still mixing in equilibrium with this
prize profile. Our results show that it is optimal to turn down the heat even more, by moving
from the perfectly discriminating and very competitive all-pay CSF towards a smoother
and less competitive CSF, exactly to the point where a pure-strategy equilibrium emerges.
Our results are also in line with the seemingly contradictory intuition of Schweinzer and
Segev (2012), who argue that optimal nested Tullock contests should turn up the heat by
concentrating prizes on the top. This holds subject to the constraint that a pure-strategy
equilibrium exists in the contest. Our optimal Tullock contest is indeed as competitive as
possible in that sense; more concentration of the prizes on the top would destroy the pure-
strategy equilibrium. Such insights can only be obtained in a setting like ours, where both
the prize profile and the CSF are endogenous and can be chosen without functional-form
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constraints.
Perhaps the most commonly studied model with imperfect observation of efforts is

one where the principal observes effort plus an i.i.d. noise term. Our third main result
focuses on this setting. We provide a condition on the distribution of noise such that
the principal can still generate a CSF that satisfies our general optimality conditions.
Recall that the principal aims for an intermediate degree of precision in the CSF anyway.
Random observational noise makes a contest less competitive for any given allocation rule.
As long as observation is not too noisy, the principal can tune the heat by combining the
observational noise and the allocation rule in a way that implements the optimum. In
particular, we show that an all-pay contest with a cap (applied to the stochastic signals
about individual agents’ efforts) is optimal. This generalizes the result of Letina et al.
(2020) mentioned above to the case of imperfect effort observability. We then extend the
analysis to one specific environment where the observation of effort is so imprecise that the
general optimality conditions cannot be satisfied. We characterize the optimal contests in
this setting and show that they still feature n− 1 equal positive prizes, a single zero prize,
and a CSF with an intermediate degree of competitiveness.

Although the focus of our analysis is on the optimal design of contests, we also compare
the principal’s payoff from an optimal contest to the payoff of a principal who instead can
use an arbitrary incentive mechanism. We show that the comparison crucially depends
on the observational structure. There exist observational structures for which a contest
is unconstrained optimal, others for which the first-best can be achieved by a mechanism
that is not a contest, and yet others for which the optimal mechanism achieves a payoff
in between the contest and the first-best. Using an arbitrary incentive mechanism either
results in a payoff that is equal to that of the optimal contest, equal to the first-best payoff,
or anything in between. We also show that the optimal contest payoff and the first-best
payoff converge as the number of agents increases, so that any potential gain from using
arbitrary incentive mechanisms disappears in large contests.

In our baseline model, we assume that the agents are symmetric, entry into the contest
is costless, and that the agents are (weakly) risk-averse. To illustrate the flexibility of our
approach, we relax these assumptions in turn. We first consider agents with heterogeneous
effort cost functions. We derive the optimal contest for n = 2, and for n > 2 we provide
results for the case when heterogeneity is sufficiently small. When agents have to incur a
cost to enter the contest, we show that the optimal prize profile still features n−1 equal top
prizes but the lowest prize is potentially positive, to give rents to the agents and incentivize
entry. Finally, for risk-loving agents, the optimal prize structure becomes winner-take-all
but the CSF still exhibits an intermediate degree of competitiveness.

The paper is organized as follows. The model is introduced in Section 2. Our main
results are in Section 3. The extensions can be found in Section 4. Section 5 provides a
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more detailed overview of the related literature, and Section 6 concludes. All proofs are in
the Appendix.

2 The Model

2.1 Environment

There is a principal and a set of agents I = {1, . . . , n}, where n ≥ 2. Each agent i ∈ I

chooses an effort level ei ≥ 0, incurs a cost of effort equal to c(ei), and obtains a monetary
transfer ti ≥ 0. The payoff of agent i is

Πi(ei, ti) = u(ti)− c(ei).

The utility function u : R+ → R is twice differentiable, strictly increasing, weakly concave,
and satisfies u(0) = 0. The cost function c : R+ → R+ is twice differentiable, strictly
increasing, strictly convex, and satisfies c(0) = 0, c′(0) = 0, and limei→∞ c

′(ei) =∞.
Denote the effort profile of all agents by e = (e1, . . . , en) ∈ E = Rn

+ and the transfer
profile by t = (t1, . . . , tn) ∈ T = Rn

+. The payoff of the principal is

ΠP (e, t) =
n∑
i=1

ei −
n∑
i=1

ti.

That is, the principal maximizes the sum of efforts net of transfers.
After the agents have chosen their efforts, a signal s ∈ S is drawn according to an

effort-dependent probability measure ηe ∈ ∆S. The principal observes s but not e. We
denote η = (ηe)e∈E and call (S, η) the observational structure of the model. We do not
impose any assumptions on the set of signals S or the stochastic signal-generating process
η.3 The observational structure is assumed to be common knowledge.

A large range of applications and examples can be modelled by different observational
structures. Perfect observability of effort is the special case where S = E and ηe is the
Dirac measure on e. A second example is the classical moral-hazard setting where each
agent’s effort ei produces a random output si such that Eηe [si] = ei (and therefore it does
not matter whether a risk-neutral principal cares about effort ei, as we assume, or about
output si). Our general observational structure also allows for stochastic outputs which
are correlated across the agents like in Green and Stokey (1983) or Nalebuff and Stiglitz
(1983). A third example is a setting where only an aggregate statistic of the effort profile
becomes observable. For instance, suppose there are two agents and only the difference

3We do require the regularity condition that ηe(A) is a measurable function of e for each measurable
subset A ⊆ S, to ensure that expected payoffs are well-defined.
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between their efforts but not the levels can be observed. This amounts to an observational
structure where S = R and ηe is the Dirac measure on e1 − e2. One could also model the
observation of ordinal performance ranks, or a blind review process where the individual
efforts are anonymized.

2.2 Contests

A contest (y, π) is defined by a prize profile y and an allocation rule π. The prize profile
y = (y1, . . . , yn) is w.l.o.g. assumed to satisfy y1 ≥ . . . ≥ yn ≥ 0. The allocation rule π
determines the possibly random allocation of the prizes to the agents as a function of the
realized signal s. Formally, π = (πki (s))i,k∈I,s∈S is a collection of allocation probabilities,
where πki (s) is the probability that agent i gets prize yk when the realized signal is s. For
any fixed signal s, these allocation probabilities satisfy

∑n
i=1 π

k
i (s) = 1 for all k = 1, . . . , n

(each prize is allocated with probability one) and
∑n

k=1 π
k
i (s) = 1 for all i = 1, . . . , n

(each agent obtains a prize with probability one). In other words, the probabilities form
a doubly stochastic matrix for any given s. By the Birkhoff-von Neumann theorem, each
doubly stochastic matrix can be decomposed as a probability distribution over permutation
matrices, which in our setting describe deterministic allocations of the prizes to the agents.4

Conversely, each probability distribution over permutation matrices generates a doubly
stochastic matrix. This allows us to identify the allocation rule with a collection of doubly
stochastic matrices, one for each signal realization.5

Given the fixed observational structure (S, η) and a contest (y, π), the probability that
agent i wins prize yk when the effort profile is e can be calculated as

pki (e) = Eηe [πki (s)]. (1)

It follows that the winning probabilities in (1) also form a doubly stochastic matrix for any
given effort profile e, because they are an average of doubly stochastic matrices. We refer
to the collection of probabilities p = (pki (e))i,k∈I,e∈E as the contest success function (CSF).
The incentives of the agents depend exclusively on the probabilities of winning the different
prizes as a function of their efforts, and these are jointly determined by the allocation rule
π chosen by the principal and the exogenously given distribution of the signals η. With
perfect observability of effort, the distinction between π and p is not important. However,
as we will see later, what the principal can implement will depend on the extent to which
she can influence the CSF p by choice of the allocation rule π.

Example 1. Suppose efforts can be perfectly observed (s = e with probability one).

4The decomposition is not necessarily unique, but this is not relevant in our setting since the agents
care only about their own probabilities of winning each prize.

5Similar to before, we require the regularity condition that each πk
i (s) is a measurable function of s.
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Assume that there are two agents, so that the prize profile is y = (y1, y2) with y1 ≥ y2 ≥ 0.
If the principal designs an all-pay contest, we obtain for i, j = 1, 2 with i 6= j,

π1
i (e) = p1

i (e) =


1 if ei > ej,

1/2 if ei = ej,

0 if ei < ej.

If the principal designs a Tullock contest with impact function f , we have

π1
i (e) = p1

i (e) =


f(ei)

f(ei) + f(ej)
if max{ei, ej} > 0,

1/2 else.

In this interpretation, the noise in the prize allocation is deliberately designed by the
principal and not the consequence of imperfect observation of efforts. �

Example 2. Now suppose the efforts of the two agents are imperfectly observed, and
s = (s1, s2) ∈ R2. Assume the principal designs an all-pay allocation rule as a function of
the signals,

π1
i (s) =


1 if si > sj,

1/2 if si = sj,

0 if si < sj.

The induced CSF then depends on the shape of the observational noise. If, for example,
si = ei + εi and the noise terms εi are i.i.d. Gumbel with mean zero, then it follows like in
the well-known logit model (McFadden, 1974) that

p1
i (e) =

exp(ei/β)

exp(ei/β) + exp(ej/β)

for some β > 0. In this interpretation, a specific Tullock CSF arises as a consequence of
imperfect observation of efforts. See Jia, Skaperdas, and Vaidya (2013) for similar results
for various other noise structures. �

Given a contest, the agents choose their efforts simultaneously, anticipating that the
prizes y will be distributed according to the CSF induced by the observational structure
and the allocation rule. Let σi ∈ ∆R+ be agent i’s mixed strategy and let ei ∈ R+ represent
pure strategies. Strategy profiles are given by σ = (σ1, ..., σn) ∈ (∆R+)n. We also use σ
to denote the induced product measure in ∆E. We say that a contest (y, π) implements a
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strategy profile σ if it satisfies

Πi(σi, σ−i | (y, π)) ≥ Πi(σ
′
i, σ−i | (y, π)) ∀σ′i ∈ ∆R+,∀i ∈ I, (IC-A)

where Πi(σ | (y, π)) = Eσ
[∑n

k=1 p
k
i (e)u(yk)

]
− Eσi [c(ei)] and the winning probabilities are

given by (1). The principal chooses a contest (y, π) which implements a strategy profile σ
in order to maximize her expected payoff. Formally, the principal’s problem is given by

max
σ,y,π

ΠP (σ | (y, π)) s.t. (IC-A), (P)

where ΠP (σ | (y, π)) = Eσ [
∑n

i=1 ei]−
∑n

i=1 yi. A contest (y∗, π∗) is optimal if there exists
σ∗ such that (σ∗, (y∗, π∗)) solves (P).

3 Optimal Contests

3.1 General Properties

The level of effort that the principal can induce will depend on the observational structure.
As a simple illustration of this point, consider the case when the signals are independent of
the effort profile. In this case, since effort is costly and does not affect the distribution of
signals and prizes, the agents would always choose zero effort and the principal optimally
decides not to award any positive prizes. However, when signals are sufficiently informative
about efforts, the principal will be able to design contests which generate strictly positive
payoffs.

In this subsection, we derive general conditions which are sufficient for a contest to be
optimal. These conditions are stated in terms of the prize profile and the induced CSF.
Whether it is possible for the principal to generate a CSF satisfying these conditions will
depend on the exogenously given observational structure. In the subsequent subsections,
we will study various observational structures, check whether the sufficient conditions can
be attained, and explore the shape of the required allocation rule π.

Consider the prize profile y∗ = (x∗/(n− 1), . . . , x∗/(n− 1), 0) where the total sum x∗ is
characterized by

u′
(

x∗

n− 1

)
= c′

(
c−1

(
n− 1

n
u

(
x∗

n− 1

)))
.

Profile y∗ features n−1 equal positive prizes and a single zero prize. An agent participating
in any contest (y∗, π) only cares about the aggregate probability of obtaining any one of
the identical positive prizes. Denote this probability by p−ni (e) = 1− pni (e). Furthermore,
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let the effort level e∗ be given by

e∗ = c−1

(
n− 1

n
u

(
x∗

n− 1

))
.

We will denote by (ei, e
∗
−i) the effort profile where agent i chooses effort ei and all agents

j 6= i choose effort ej = e∗. Letina et al. (2020) have shown that – in a setting with perfect
observability of effort – optimal contests feature the prize profile y∗ and implement the
symmetric effort profile (e∗, . . . , e∗). The resulting maximal payoff Π∗ = ne∗ − x∗ under
perfect information is clearly an upper bound on the principal’s payoff with an arbitrary
observational structure. Our following proposition gives conditions under which a contest
achieves this upper bound even with imperfect observability of effort and is thus optimal.

Proposition 1 Fix an arbitrary observational structure (S, η). If a contest (y, π) has the
prize profile y = y∗ and the CSF satisfies, for each i ∈ I,

(i) p−ni (e∗, e∗−i) = n−1
n
, and

(ii) p−ni (ei, e
∗
−i) ≤

c(ei)
u(x∗/(n−1))

, ∀ei 6= e∗,

then it is optimal, because it implements (e∗, . . . , e∗) and achieves the payoff bound Π∗.

To achieve optimality, property (i) of the proposition requires that in equilibrium all
agents must receive a positive prize with equal probability (n − 1)/n. Note that, if the
observational structure (S, η) is not symmetric across agents, the allocation rule π must
compensate that asymmetry. Property (ii) specifies how precisely the CSF has to dis-
criminate between different levels of effort in order to achieve the optimum. If an agent
deviates to some effort ei 6= e∗, the probability of winning a positive prize has to remain
below a certain boundary. This boundary is a continuous and strictly increasing function of
the deviation effort, and therefore optimal CSFs must have an intermediate level of preci-
sion. They must be precise enough to detect and punish downward deviations sufficiently
strongly, but they are not allowed to be too precise in detecting and rewarding upward
deviations.

This insight is illustrated in Figure 1 for the case of two agents. The top left panel
shows the probability that the deviating agent i wins the positive prize with a linear
Tullock CSF where p1

i (e) = ei/(ei + ej). As noted before, this probability could be due to
deliberate randomization of the principal and/or noise in the observation of efforts. The
linear Tullock CSF is not sufficiently precise in punishment because downward deviations
from e∗ do not lead to a sufficient decrease in the winning probability which would deter
the deviation. The top right panel shows a standard all-pay CSF, which the principal
can induce if she observes at least the ordinal ranking of the agents’ efforts. This all-pay
CSF has the opposite problem; it is too precise in rewarding upward deviations because
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small upward deviations lead to a too large increase in the probability of winning, making
such deviations profitable. The bottom left panel shows an all-pay CSF with a cap at
e∗. It perfectly discriminates any downward deviation but does not discriminate upward
deviations, and hence is feasible whenever the principal can detect downward deviations
from the equilibrium effort with probability one. In a setting with perfect observability of
efforts, Letina et al. (2020, Theorem 3) have shown that an all-pay contest with a cap at
e∗ is optimal. However, as Proposition 1 and Figure 1 suggest, there are other CSFs which
can achieve the optimum. We will demonstrate that some of these CSFs are feasible even
with quite imprecise or coarse observation of efforts.

e∗

n− 1

n

1

ei

p−ni (ei, e
∗
−i)

e∗

n− 1

n

1

ei

p−ni (ei, e
∗
−i)

e∗

n− 1

n

1

ei

p−ni (ei, e
∗
−i)

min
{

c(ei)
u(x∗/(n−1))

, 1
}

linear Tullock

standard all-pay

all-pay with cap at e∗

Figure 1: Probability that agent i wins a positive prize when deviating from e∗, calculated
for n = 2 and u(t) =

√
t and c(e) = e2.

Fang et al. (2020) have shown that reducing inequality in the prize profile is beneficial
for the principal in a contest with an all-pay CSF, which only admits mixed-strategy
equilibria. Reducing prize inequality reduces dispersion of efforts chosen in the mixed
equilibrium, and random effort choice is inefficient due to convex effort costs. Fang et al.
(2020) therefore conclude that it is optimal in all-pay contests to move towards the least
unequal prize profile with n−1 identical positive prizes and one prize of zero (see also Glazer
and Hassin, 1988; Letina et al., 2020). Generalizing this insight by Fang et al. (2020), our
Proposition 1 shows that a minimally competitive prize profile y∗ is optimal also when the

10



CSF is not exogenously fixed to be all-pay. The general message of Fang et al. (2020) is
that “turning up the heat” in an all-pay contest increases the dispersion of the equilibrium
effort distributions and decreases the expected equilibrium effort that agents exert. As a
consequence, the principal should turn down the heat by using the minimally competitive
prize profile. Our result in Proposition 1 shows that it is optimal to turn down the heat
of the contest even more, by moving away from the perfectly discriminatory and thus very
competitive all-pay CSF towards less discriminatory and hence less competitive CSFs. The
optimal precision of the CSF is such that dispersion of equilibrium efforts vanishes entirely
and a pure-strategy equilibrium emerges.

3.2 Perfect Observability of Effort

Perfect observability of effort is a special case of the observational structure (S, η) where
S = E and ηe is the Dirac measure on e. When effort is perfectly observable, we now show
that, in addition to the all-pay contest with a cap at e∗, a properly designed Tullock contest
can also achieve the optimum. This result is interesting for at least three reasons: (i) it
shows that the optimum can be achieved by a smooth and strictly increasing contest success
function, (ii) Tullock CSFs can be naturally ordered by a precision parameter which will
provide insights about the optimal intensity of competition in contests, and (iii) it shows
that a commonly studied contest format is optimal.

Tullock contests with n agents and a single positive prize are typically characterized by
an allocation function of the form

π1
i (e) = p1

i (e) =
f(ei)∑
j∈I f(ej)

. (2)

The impact function f is continuous, strictly increasing and satisfies f(0) = 0 (Skaperdas,
1996). If all agents exert zero effort, each of them wins with equal probability. With more
than one positive prize, the contest success function can be applied in a nested fashion (see
Clark and Riis, 1996).6 The first prize is allocated according to (2) among all n agents,
the second prize is allocated according to (2) restricted to those n− 1 agents who have not
received the first prize, and so on. To write this in our notation, let P k

i denote the set of
all permutations τ : I → I which satisfy τ(i) = k. When all efforts are strictly positive, a
nested Tullock contest then gives rise to the allocation probabilities

πki (e) = pki (e) =
∑
τ∈Pk

i

n∏
`=1

[
f(eτ−1(`))∑n
j=` f(eτ−1(j))

]
. (3)

6For sufficient conditions guaranteeing existence and uniqueness of pure strategy equilibria in nested
Tullock contests see Fu, Wu, and Zhu (2021b, 2022).
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e∗

n− 1

n

1

ei

p−ni (ei, e
∗
−i)

min
{

c(ei)
u(x∗/(n−1))

, 1
}

optimal Tullock

Figure 2: Probability that agent i wins a positive prize when deviating from e∗ in the
optimal Tullock contest, calculated for n = 2 and u(t) =

√
t and c(e) = e2.

The extension to the case where some efforts are zero is straightforward.

Proposition 2 Suppose efforts are perfectly observed. Then, the nested Tullock contest is
optimal if the prize profile is y = y∗ and the CSF is given by (3) with

f(ei) = c(ei)
r∗(n) and r∗(n) =

n− 1

Hn − 1
,

where Hn =
∑n

k=1 1/k is the n-th harmonic number.

To prove Proposition 2, we employ a novel approach that is of independent interest and
could prove useful in other settings. Instead of showing directly that no profitable deviation
exists, we fix an arbitrary deviation and ask for which levels of the Tullock exponent r this
deviation is not profitable. Using this approach, we can show that when r ≥ r∗(n), there
are no profitable deviations from the equilibrium effort to lower effort levels. The inequality
r ≥ r∗(n) reflects that the CSF must be sufficiently precise to deter downward deviations.
When r ≤ r∗(n), there are no profitable deviations to higher effort levels. The inequality
r ≤ r∗(n) reflects that the CSF cannot be too precise, as otherwise upward deviations
would become attractive. Altogether, the optimal Tullock contest features the intermediate
precision parameter r∗(n) and therefore an intermediate intensity of competition.7 This
is illustrated in Figure 2, again for the case of two agents. The optimal Tullock CSF is
smooth and tangential to our upper bound from Proposition 1 at the equilibrium effort.

If there are two agents and hence one positive prize, we obtain r∗(2) = 2. It is well-
known that this is the largest value of the parameter r for which the two-agent Tullock

7Readers familiar with the Tullock form may be surprised that f depends on the cost function c.
However, standard formulations of the Tullock contest assume linear cost functions, which is then equivalent
to a reformulation of our model where agents choose expenditure levels c(ei) directly. It may also appear
that an all-pay contest with a cap is more “detail-free” than the optimal Tullock contest, since the function
f depends on c. However, this is not the case, as the level of the cap in the optimal all-pay contest also
depends on c (as does the optimal prize profile y∗).
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contest still has a pure-strategy equilibrium. This property of the optimal contest carries
over to n > 2. The precision parameter r∗(n) is such that any increase in r would destroy
the pure-strategy equilibrium.8

For the case of n risk-neutral agents and cost functions of the monomial form, Schweinzer
and Segev (2012) show that there is a continuum of nested Tullock contests that all generate
the first-best pure-strategy efforts, for a given prize sum. That continuum is parametrized
by the precision parameter r ∈ [n/(n−1), (n−1)/(Hn−1)] and the prizes are concentrated
on the top as much as possible so that the pure-strategy equilibrium still exists. Considering
their special case, where the first-best is achievable due to risk-neutrality of the agents, this
multiplicity of optimal contests of course carries over to our setting. In the general case with
risk-averse agents, where the first-best is not achievable, the optimal contest described in
Proposition 2 always has the highest possible precision parameter r∗(n) = (n−1)/(Hn−1)

from along the continuum. A higher r would make the contest too competitive and induce
wasteful mixing in equilibrium. A lower r would induce less effort, and, in contrast to
Schweinzer and Segev (2012), these weaker incentives cannot be compensated by a more
unequal prize profile when the agents are risk-averse.

As already mentioned by Schweinzer and Segev (2012), the randomness parameter r∗(n)

is strictly increasing in n and satisfies limn→∞ r
∗(n) = ∞. In other words, the optimal

contest becomes more precise and more competitive as n grows, and it approximates an
all-pay contest in the limit when the contest becomes large.9

3.3 Imperfect Observability of Effort: Some Instructive Cases

In this section, we look for optimal contests when observability of effort is imperfect.
We first consider several cases where our upper payoff bound can be achieved despite the
imperfect observation. When that is the case, Proposition 1 can be used to greatly simplify
the identification of optimal contests. Then, we consider one case in which observation is
so imperfect that the upper payoff bound can no longer be achieved, and use it to show
how our approach can be fruitful even in such environments.

3.3.1 Upper Payoff Bound Achievable

The most common way in which imperfect observation is modelled in the literature is to
assume that a random shock is added to the effort that an individual agent exerts. Formally,
we say that the observational structure (S, η) features i.i.d. additive noise if, for each agent

8This is also similar to the finding in Morgan et al. (2022), who show that in a large Lazear-Rosen
tournament, the optimal level of precision of the CSF is such that the agents are indifferent between
dropping out of the contest and participating.

9Our Appendix A.3 contains a formal proof of that claim. See Siegel (2009) for a general treatment of
all-pay contests and Olszewski and Siegel (2016) for large contests.
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i ∈ I, the principal observes a signal si = ei + εi, where the noise terms εi are i.i.d. draws
from a distribution with cumulative distribution function F and support contained in an
interval [ε, ε].

Given this noise structure, we can derive a condition on the distribution F under which
the principal can choose an allocation function which generates a CSF satisfying the op-
timality conditions in Proposition 1, and we can study properties of the optimal CSF. To
this end, denote by F− the left-continuous limit of F , i.e., F−(x) = limy↗x F (y) for all x.

Proposition 3 Suppose efforts are observed with i.i.d. additive noise. If

F−(ε+ e∗ − e) ≥ 1− c(e)

c(e∗)
, ∀e ∈ [0, e∗], (4)

then a contest with prize profile y = y∗ and an all-pay allocation rule with a cap at s̄ = e∗+ε

is optimal.

Any agent who exerts the equilibrium effort e∗ will generate a signal si ≥ s̄, which is
at or above the cap. An agent who unilaterally deviates downwards to ei ∈ [s̄− ε, e∗) may
still generate a signal at or above the cap with positive probability and thus win a prize
with positive probability. In order for (e∗, . . . , e∗) to be an equilibrium, the observational
structure must be precise enough so that such downwards deviations are detected and
punished with sufficiently high probability. Proposition 3 provides exactly this condition
on the distribution of observational noise. Upwards deviations are never rewarded because
of the cap, like in the case of an all-pay contest with a cap under perfect observability.
Figure 3 illustrates this for the case of two agents. The optimal CSF is a continuous
modification of the previous all-pay contest with a cap, and it is feasible despite imperfect
observation of downwards deviations from equilibrium.

Perfect observation of efforts is still a special case to which Proposition 3 applies, by
setting ε = ε = 0. Thus, the optimality of an all-pay contest with a cap for perfectly
observable efforts by Letina et al. (2020) is a corollary of Proposition 3.

The following corollary demonstrates a straightforward application of the condition in
Proposition 3.

Corollary 1 Suppose εi is uniformly distributed and ∆ ≡ ε̄− ε < e∗. Then, the condition
in Proposition 3 is satisfied if ∆ ≤ c(e∗)/c′(e∗).

The i.i.d. additive noise setting of Proposition 3 is by far not the only case in which
optimal contests can be derived using our Proposition 1. We illustrate this with two addi-
tional examples. In the first example, the observational noise has an unbounded support
and can be correlated across the agents. In the second example, observation is not noisy,
but only a coarse aggregate statistic of the effort profile can be observed.
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s̄− ε e∗

n− 1

n

1

ei

p−ni (ei, e
∗
−i)

min
{

c(ei)
u(x∗/(n−1))

, 1
}

optimal all-pay with cap at s̄

Figure 3: Probability that agent i wins a positive prize when deviating from e∗ in the
optimal all-pay contest with a cap for i.i.d. additive noise εi ∼ U [−0.1, 0.1], calculated for
n = 2 and u(t) =

√
t and c(e) = e2.

Example 3. Consider a setting with two agents and effort cost function c(ei) = γeβi for
some γ > 0 and β > 1. The observational noise takes a multiplicative or log-additive form:
when agent i exerts effort ei, then a signal si = eiri is generated, where the pair (r1, r2)

follows a bivariate log-normal distribution,

(r1, r2) ∼ lnN

[(
ν1

ν2

)
,

(
σ2

1 σ12

σ12 σ2
2

)]
.

We show in Appendix A.6 that the principal can choose an allocation rule which generates
a CSF satisfying the conditions in Proposition 1 whenever the inequality

σ2
1 + σ2

2 − 2σ12 ≤ 2/(πβ2)

holds, which again just requires that the observational noise is not too large. The optimal
contest allocates the positive prize to agent 1 with a probability that is increasing in the
ratio of observed signals s1/s2. More precisely, agent 1 receives the prize when s1/s2 is
larger than a log-normally distributed random number, and conversely for agent 2. Similar
contests with multiplicative noise have been studied in the literature.10 With this construc-
tion, the overall randomness in the prize allocation can be adjusted to the appropriate
interior level which guarantees optimality. This is illustrated in the left panel of Figure 4.

Example 4. Consider a setting with two agents in which the difference s = e1 − e2

can be observed (and perfectly so), but no additional information about the effort profile.
We show in Appendix A.6 that, despite this strong constraint, the principal can always

10See, for instance, Jia et al. (2013). We are not aware of an explicit treatment of the multiplicative
log-normal noise model in the literature, but of course it can be transformed into a specific probit model
with additive normal noise (Dixit, 1987).
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Example 3

Example 4

Figure 4: Probability that agent i wins a positive prize when deviating from e∗ in Examples
3 and 4, calculated for u(t) =

√
t and c(e) = e2.

choose an allocation rule which generates a CSF satisfying the conditions in Proposition
1. The optimal contest allocates the positive prize to agent 1 with a probability that is
increasing in the observed difference s. More precisely, agent 1 receives the prize whenever
s is larger than a uniformly distributed random number, and conversely for agent 2. Such
contests with additive noise have also been studied in the literature.11 An appropriate
level of randomness in the allocation rule again ensures that the contest has the optimal
intermediate level of precision. This situation is illustrated in the right panel of Figure 4.

3.3.2 Upper Payoff Bound Not Achievable

Of course, Proposition 1 is not always applicable. One example is the extreme case of
uninformative signals discussed in Section 3.1. More generally, it will be impossible to
implement the effort profile (e∗, . . . , e∗) when the signals on which the prize allocation can
be conditioned are too noisy or too coarse.

To illustrate that our approach can still be fruitful in such environments, consider the
following example of an observational structure. Given the agents’ effort profile e ∈ E, the
principal observes a signal s ∈ S = E which fully reveals the truth (s = e) with probability
ω ∈ [0, 1]; with the remaining probability, the signal is pure noise, generated by a fixed
probability measure η̂ ∈ ∆E that is independent of effort. This “truth-or-noise” signal
structure has been studied before in the information economics literature (e.g., Johnson
and Myatt, 2006; Lewis and Sappington, 1994; Shi, 2012). It has the advantage of providing
a measure of the informational friction of the environment. By varying the value of ω, we
can cover both the cases of perfect observability (ω = 1) and zero observability (ω = 0).

The possibility of pure noise prohibits the principal from achieving the same payoff
11See, for instance, Lazear and Rosen (1981) and Hirshleifer (1989). Che and Gale (2000) provide a

general treatment of contests with additive uniform noise. They show that these contests often do not
have a symmetric pure-strategy equilibrium. The uniform distribution used in our construction is chosen
precisely to avoid this problem.
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as under perfect observability. To see why, note that the agents receive zero rents in
optimal contests with perfect observability. With pure noise, the principal has to leave
some rents to the agents, because the noise implies that some agents must win a prize
with positive probability even when they deviate to zero effort and have zero costs. The
optimal contest can still be derived using a modified approach. Let us define the prize
profile yω = (xω/(n− 1), ..., xω/(n− 1), 0) yω = (xω, . . . , xω, 0) for every ω ∈ [0, 1], where
the total sum xω is uniquely pinned down by

u′
(

xω

n− 1

)
= c′

(
c−1

(
ω

(n− 1)

n
u

(
xω

n− 1

)))
.

When ω > 0, the prize profile yω features n − 1 equal positive prizes and a single zero
prize; for ω = 0, all prizes are zero. It again suffices to describe any contest (yω, π) by its
probability of assigning one of the identical positive prizes to each agent i given the signal
realization s ∈ E, which we write as π−ni (s) = 1− πni (s). Further, let the effort level eω be
given by

eω = c−1

(
n− 1

n
u

(
xω

n− 1

))
.

We will use (ei, e
ω
−i) to denote the effort profile where agent i chooses effort ei and all agents

j 6= i choose effort ej = eω.

Proposition 4 Suppose the observational structure is truth-or-noise. A contest (y, π) is
optimal if the prize profile is y = yω and the allocation rule π satisfies, for each i ∈ I,

(i) π−ni (eω, eω−i) = n−1
n
, and

(ii) π−ni (ei, e
ω
−i) ≤

c(ei)
u(xω/(n−1))

, ∀ei 6= eω.

Proposition 4 implies the existence of an optimal contest – one can always construct an
allocation rule π that satisfies both conditions (i) and (ii). The proposition also subsumes
the optimal contest in Letina et al. (2020) as a special case, because yω = y∗ and eω = e∗

when ω = 1. However, when ω < 1, the principal can never be sure whether an agent is
working or shirking, and has to leave a strictly positive rent to the agents if she wants to
incentivize them to work. Although a contest with n− 1 equal positive prizes and a single
zero prize remains optimal, the principal finds it desirable to limit the agents’ information
rents by providing a lower incentive power (xω < x∗) and asking them to exert less effort
than before (eω < e∗).
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3.4 Second-Best Payoffs

In this subsection, we compare the principal’s payoffs when using an optimal contest with
the second-best payoffs, where second-best is defined as what the principal can achieve by
using an arbitrary incentive mechanism without being constrained to the class of contests,
but still under a possibly imperfect observational structure. Can the principal do better
by not using a contest? The answer to this question depends crucially on the observational
structure, as we show by the following three examples.

Example 5. There are observational structures for which an optimal contest is second-
best, so that the restriction to the class of contest mechanisms comes without loss for the
principal. Consider an example with two agents and two signals, I = S = {1, 2}. The
signals are generated by the probabilities

ηe({i}) =


1 if ei < ej = e∗,

0 if ej < ei = e∗,

1/2 otherwise,

for i, j = 1, 2 with i 6= j. In words, if one agent deviates downward from (e∗, e∗), this agent
is announced. In all other cases, one of the two agents is announced randomly.

Consider the contest (y, π) with y = (x∗, 0) and

π1
i (s) =

1 if s = j,

0 if s = i,

so agent i wins the positive prize if and only if the signal announces the other agent. It
is easy to see that this contest implements (e∗, e∗). Hence it is an optimal contest and
generates an average payoff per agent of size e∗ − x∗/2 for the principal.

We claim that this is also the highest payoff that the principal can achieve when using
more general incentive mechanisms. For the given observational structure, a general mech-
anism is described by Φ = {(t̄i, ti)}i=1,2, where t̄i (ti) is transfer that the principal pays to
agent i when the signal is s = j (s = i).12 Note that an effort level e′ > e∗ can never be a
best response for an agent, irrespective of what strategy the other agent is playing, because
reducing the effort slightly saves effort costs without changing the distribution of the signal.
By the same argument, an effort level 0 < e′ < e∗ can never be a best response. Hence
we can restrict attention to effort strategies which are binary distributions over {0, e∗} and
denote by σi the probability that agent i chooses e∗. Given σj, agent i weakly prefers e = e∗

12It is without loss to restrict attention to deterministic transfers given each signal, because the agents
are weakly risk-averse and the principal is risk-neutral.
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over e = 0 if and only if(
1− σj

2

)
· u(t̄i) +

σj
2
· u(ti)− c(e∗) ≥

1− σj
2
· u(t̄i) +

1 + σj
2
· u(ti),

or, equivalently, u(t̄i) − u(ti) ≥ c(e∗)/2 = u(x∗), which is thus a necessary condition
to generate any positive effort in equilibrium. The most cost-effective way to meet this
inequality is to set t̄i = x∗ and ti = 0. But then it is clear that the principal cannot do
better with an arbitrary mechanism than with the optimal contest. �

Example 6. There are other observational structures for which the principal can do better
by not using a contest. Consider the case of n agents and perfect observability of effort. In
that case, the principal can treat each agent separately and pay a monetary transfer if and
only if the agent exerts a desired effort level. Transfers only have to compensate agents for
their cost. It is thus possible to achieve the first-best solution. The first-best effort is

eFB = c−1
(
u
(
xFB

))
,

and the first-best transfer xFB to an agent is defined by the first-order condition

u′
(
xFB

)
= c′

(
c−1
(
u
(
xFB

)))
.

Denote by ΠFB = eFB − xFB the first-best payoff per agent for the principal. It is easy
to show that e∗ ≤ eFB and e∗ − x∗/n ≤ ΠFB, and the inequalities are strict whenever u is
strictly concave. �

Example 7. There are also examples where the principal can do better than with a contest
even though the first-best is not achievable. Suppose that each agent’s effort is perfectly
observable up to a cap ē with e∗ < ē < eFB, but the individual signal remains capped at
ē for all higher effort levels. It is immediate to see that the first-best is not achievable.
However, it is possible to elicit the effort ē from each agent by paying the transfer u−1 (c (ē))

if the signal indicates that the effort was at least ē and zero otherwise. This generates a
payoff for the principal that is strictly larger than with a contest. �

Giving a general answer to the question which share of second-best payoffs the principal
can achieve by using a contest is impeded by the fact that we (and decades of literature)
do not know the second-best for all conceivable observational structures, many of which
are untractable. We now show, however, that the problem becomes less pressing when the
number of agents is large, because the contest payoffs converge to the first-best as n grows.

Let (Sn, ηn)n∈N be a sequence of observational structures such that there exists a contest
achieving our payoff bound when the number of agents is n and the observational structure
is given by (Sn, ηn), for every n ∈ N. Examples include perfect observation of each agent’s
effort or i.i.d. additive noise as characterized in Proposition 3. Denote by x∗n the optimal
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sum of prizes in the contest when there are n agents, defined as before, and by e∗n the
corresponding individual effort elicited by an optimal contest. Let Π∗n = e∗n − x∗n/n denote
the average payoff per agent for the principal.

Proposition 5 limn→∞ e
∗
n = eFB and limn→∞Π∗n = ΠFB.

Similar arguments can be made about risk-aversion. For a parameterized example
where the agents’ payoffs are Πi(ei, ti) = tαi − e2

i , Figure 5 depicts the percentage of first-
best payoffs that the principal can achieve with an optimal contest as a function of the
risk-aversion parameter α and for several values of n. As α → 1 the share of first-best
payoffs that the principal can capture converges to one. Even for a modest number of
agents, the principal obtains a substantial share of the first-best by running an optimal
contest. For instance, already for n = 6 the principal captures more than 90% of the
first-best payoffs for any α ∈ (0, 1).
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Figure 5: Share of first-best payoffs with an optimal contest.

4 Extensions

4.1 Heterogeneous Agents

Our framework can also incorporate heterogeneity in the abilities of the agents. Consider
a variation of the model in which the payoff of agent i is given by

Πi(ei, ti) = u(ti)− ci(ei),
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where the cost functions ci satisfy our previous assumptions but can be different across
agents. For the case of two agents, we provide a result that generalizes Proposition 2
(which assumes perfect effort observability) to arbitrary cost functions.

Proposition 6 Suppose efforts are perfectly observed and n = 2. Then, for any profile of
cost functions (c1, c2), the following contest is optimal:

(i) The prize profile is y∗ = (x∗, 0) where x∗ is given by

(x∗, e∗1, e
∗
2) ∈ argmax

x,e1,e2≥0
e1 + e2 − x s.t. c1(e1) + c2(e2) = u(x).

(ii) The CSF is of the Tullock type (2) with individual-specific impact functions

fi(ei) =
ci(ei)

r∗i

ci(e∗i )
r∗i−1

and r∗i = 1 +
ci(e

∗
i )

cj(e∗j)
, ∀i = 1, 2, j 6= i.

For the special case where c1(·) = c2(·) = c(·), we obtain e∗1 = e∗2 = e∗ and r∗i = 2, so
that the optimal impact functions are (up to an irrelevant multiplicative constant) given
by fi(ei) = c(ei)

2, exactly like in Proposition 2 for n = 2. With asymmetric cost functions,
by contrast, the optimal impact functions must be individual-specific.13 The implemented
effort levels will typically also not be identical for the two agents. Consequently, the winning
probabilities cannot be identical in equilibrium, because the agents have to be compensated
for different effort costs. That this kind of biasing of a contest is beneficial when agents
are heterogeneous is well-known (see e.g. Ewerhart, 2017; Franke, Leininger, and Wasser,
2018). Our result establishes the form of biasing that is optimal when the principal is not
restricted to a specific class of CSFs.

That the principal would optimally choose a zero prize yn = 0 continues to hold with
n > 2 asymmetric agents (see Lemma 7 in the Appendix). Generalizing the optimality
of n− 1 equal positive prizes faces the difficulty that some agents may have substantially
higher effort costs in equilibrium than others, and cannot be compensated for their costs
even if they win one of the identical prizes for sure. Our next result rests on the insight that
effort profiles for which the agents’ costs are so strongly heterogeneous cannot be optimal
if their cost functions are not strongly heterogeneous. To formalize this idea, we fix any
sequence of cost function profiles (cm1 , . . . , c

m
n )m∈N such that, for each i ∈ I, the sequence

(cmi )m∈N converges uniformly to a common cost function c as m→∞.

13See, for example, Cornes and Hartley (2005) for an equilibrium analysis of Tullock contests with
individual-specific impact functions. Sahm (2022) studies the optimal choice of the Tullock exponent r
with heterogeneous agents under the constraint that the contest must be symmetric.
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Proposition 7 Suppose efforts are perfectly observed and let (cm1 , . . . , c
m
n ) → (c, . . . , c)

uniformly. Then, there exists m ∈ N such that for all m ≥ m, a contest with n − 1 equal
positive prizes and one zero prize is optimal.

The optimality of a minimally competitive prize profile is robust to heterogeneity even
with n > 2 agents, as long as the heterogeneity is not too large. Again, an optimal contest
will typically ask for different effort levels from different agents, and allocates the zero prize
with non-identical probabilities across the agents in equilibrium. While Proposition 7 only
states the existence of an optimal contest with n−1 identical prizes, it is easy to show that
those prizes and the optimal effort levels are characterized by a generalized version of the
optimization problem in part (i) of Proposition 6, namely

(x∗, e∗) ∈ argmax
x,e

n∑
i=1

ei − x s.t.
n∑
i=1

ci(ei) = (n− 1)u

(
x

n− 1

)
.

Given the complexity of the problem, we leave the question whether a suitably defined
asymmetric nested Tullock contest can achieve the optimum, and the possible extensions
to imperfect effort observation, to future research.

4.2 Costly Entry

Often, simply participating in a contest is costly. For example, applying for a research
grant requires an investment of time and effort to understand the rules and requirements.
Furthermore, these costs are likely to be agent-specific and, from the principal’s point
of view, uncertain. The literature has studied such situations but typically restricts the
analysis to a specific class of CSFs (e.g., Fu, Jiao, and Lu, 2015; Liu and Lu, 2019; Morgan,
Orzen, and Sefton, 2012). This section shows how our generalized approach to contest
design can be extended to settings with costly entry.

We again restrict attention to the case of perfectly observable efforts. Suppose that each
of the n agents has a private entry cost zi ≥ 0 which is independently drawn according
to some common cumulative distribution function G. This cost is assumed to be additive
to the agents’ previous payoff functions. Each agent observes his entry cost and decides
whether to enter the contest or not. The set of entrants then becomes observable to
everyone. The sunk entry cost zi is irrelevant after the entry decision. Furthermore, we
require contests to be anonymous, so that an agent’s name i is also irrelevant. This allows
us to denote by Im = {1, . . . ,m} the set of agents in the contest for each positive number
of entrants m ≤ n and to drop the index i from the active agents’ payoff functions. The
corresponding set of possible effort profiles is Em = Rm

+ .
The principal specifies the rules of the contest in advance, for each positive number of

entrants m ≤ n. Thus, a contest ((ym, πm))m=1,...,n describes for each m
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(i) a prize vector ym = (ym1 , ..., y
m
m) ∈ Rm

+ with ym1 ≥ . . . ≥ ymm, and

(ii) anonymous allocation probabilities πm = (πm,ki (e))i,k∈Im,e∈Em .

We restrict attention to the implementation of symmetric strategy profiles characterized
by (z̄, e1, . . . , en): each agent chooses to participate in the contest if and only if zi ≤ z̄ for
some common cutoff z̄ ≥ 0, and when m agents join the contest, each active agent i ∈ Im

chooses the same effort level em ≥ 0.
If an agent is active and chooses effort e in a contest with m participants while all other

m− 1 participants are choosing the effort level em, then he will obtain the expected payoff

Πm
(
e, em−i | (ym, πm)

)
=

m∑
k=1

πm,ki

(
e, em−i

)
u(ymk )− c(e).

We say that a contest ((ym, πm))m=1,...,n implements (z̄, e1, . . . , en) if both of the following
conditions are satisfied:

(i) Π̄(m) ≡ Πm
(
em, em−i | (ym, πm)

)
≥ Πm

(
e, em−i | (ym, πm)

)
, ∀e ∈ R+ andm ∈ {1, ..., n},

(ii)
∑n

m=1

(
n−1
m−1

)
G(z̄)m−1(1−G(z̄))n−mΠ̄(m) = z̄.

Condition (i) is simply the previous constraint (IC-A) applied to each possible number of
entrants separately. Condition (ii) determines the cutoff z̄ at which an agent is indifferent
between participating or not, anticipating that all other agents apply the same cutoff for
their entry decision. The expected payoff of the principal is given by

ΠP (z̄, e1, ..., en | ((ym, πm))m=1,...,n) =
n∑

m=1

(
n

m

)
G(z̄)m(1−G(z̄))n−m

[
mem −

m∑
k=1

ymk

]
.

Our next result identifies two important characteristics of optimal contests.

Proposition 8 Suppose efforts are perfectly observed. Take any contest ((ym, πm))m=1,...,n

that implements some (z̄, e1, ..., en). Then, there exists a contest ((ŷm, π̂m))m=1,...,n that
yields a weakly higher expected payoff to the principal and implements (z̄, ê1, ..., ên) such
that, for each m = 1, ..., n,

(i) the prize profile satisfies ŷm1 = . . . = ŷmm−1 ≥ ŷmm, and

(ii) the agents are indifferent between choosing the effort level êm and zero.

The proposition implies that the principal can without loss of generality restrict atten-
tion to contests which satisfy the conditions (i) and (ii). Such contests have m−1 identical
prizes, for each number of entrants m, which shows the robustness of our previous result.
There is a difference to the case of a fixed number of agents, though. In the model without
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endogenous entry, the lowest prize in the optimal contest is always zero, the agents are
indifferent between the equilibrium effort and an effort of zero, and consequently their ex-
pected payoff is zero. With endogenous entry this is not optimal – the principal has to leave
some rents to the agents in order to incentivize costly entry. There are two ways in which
the principal could do this, either by increasing the identical positive prizes but leaving
the zero prize unchanged, or by increasing all prizes simultaneously, so that the agents are
still indifferent between the equilibrium effort and an effort of zero. Condition (ii) reveals
that the principal optimally uses the latter approach. This provides more insurance to the
risk-averse agents who are harmed by the possibility of receiving the low prize.

4.3 Risk-Loving Agents

In our main model, we assumed that agents are either risk-neutral or risk-averse. This is
in line with most of the contest theory literature. However, our approach can be equally
well applied to contests with risk-loving agents.

Suppose that u is strictly convex (while keeping all other assumptions). For any prize
sum x > 0, we define the effort level ex = c−1 (u(x)/n). As the next result shows, assuming
risk-loving agents changes our result on the optimal prize profile, which becomes winner-
take-all, but leaves our result on the intermediate level of precision of the CSF unchanged.

Proposition 9 Fix an arbitrary observational structure (S, η). For any fixed prize sum
x > 0, a contest (y, π) maximizes the principal’s payoff if the prize profile is y = (x, 0, ..., 0)

and the CSF satisfies, for each i ∈ I,

(i) p1
i

(
ex, ex−i

)
= 1

n
, and

(ii) p1
i (ei, e

x
−i) ≤

c(ei)
u(x)

, ∀ei 6= ex.

When the agents are risk-averse, the principal wants to provide the maximal degree
of insurance that is still compatible with incentives to provide effort, and this is achieved
with n − 1 equal prizes. With risk-loving preferences, by contrast, the principal wants to
provide the maximal degree of risk, as risk creates value for the agents, and this is achieved
by allocating the entire budget to a single positive prize. The shape of the optimal CSF is
driven by a different consideration. The competitiveness of the CSF must be chosen with
the goal of inducing the highest possible pure strategy effort equilibrium, and this gives
rise to an intermediate degree of competitiveness – or heat as Fang et al. (2020) call it –
just like before. It can be achieved by appropriately choosing a cap in an all-pay contest,
but other CSFs are also optimal.

Note that Proposition 9 holds for any exogenously fixed prize sum x > 0. The principal
can then try to find the optimal prize sum by solving

max
x∈R+

nc−1

(
u(x)

n

)
− x.
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Note, however, that a solution to this problem may not exist, because both c and u are
strictly convex. Depending on their relative convexity, the objective function of the prin-
cipal may not have a maximum. Of course, if the principal was budget-constrained, the
optimal prize sum would then be equal to the maximal budget.

5 Related Literature

A contest is described by two dimensions: the prize profile and the CSF. The contest
design literature has typically treated the design of these two dimensions separately. We
will first discuss existing results on the optimal prize profile,14 and then existing results on
the optimal CSF.

For the class of Tullock CSFs, Clark and Riis (1998) show that, if a symmetric pure-
strategy equilibrium exists for a winner-take-all (WTA) prize structure, then WTA is opti-
mal. More generally, Schweinzer and Segev (2012) argue that prizes should be concentrated
on the top as much as possible so that a pure-strategy equilibrium still exists, always under
the assumption of risk-neutral agents. Fu et al. (2015) focus on entry into Tullock contests
and also show that a single prize can be optimal. Feng and Lu (2018) study a multi-battle
Tullock contest and show that the optimal prize profile depends on the randomness of the
CSF. In particular, when randomness is significant, WTA is optimal.

For Lazear-Rosen tournaments, Drugov and Ryvkin (2020b) characterize the optimal
prize profile and show that the distribution of noise plays a crucial role. For light-tailed
shocks, WTA is optimal, while with heavy-tailed shocks, more equal prize-sharing becomes
optimal. For large Lazear-Rosen tournaments, Morgan et al. (2022) show that when the
distribution of noise is optimally chosen (see below), any number of equal positive prizes
is optimal.

For the class of all-pay CSFs, Fang et al. (2020) show that it is optimal to give equal
positive prizes to all agents but one, who receives a zero prize. More generally, their message
is that making an all-pay contest less competitive, by decreasing the dispersion in prizes,
increases the effort that agents exert. When agents are heterogeneous in an all-pay contest,
finding the optimal prize vector becomes difficult. Xiao (2016) shows that a WTA prize
profile is in general not optimal. By studying large all-pay contests, Olszewski and Siegel
(2020) are able to characterize the optimal prize profile under very general conditions and
show that prize sharing is optimal in general. When agents have heterogeneous private
types, Moldovanu and Sela (2001) show that WTA is optimal for weakly concave cost
functions, but that multiple prizes can be optimal for convex cost functions.

In some settings, the principal can also assign punishments in addition to prizes. Pun-
ishments can be effective tools for incentivizing effort in all-pay contests, as shown by

14For a survey on optimal prizes in contests see Sisak (2009).
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Moldovanu, Sela, and Shi (2012), Liu, Lu, Wang, and Zhang (2018) and Liu and Lu
(2021). Similar results for Tullock contests and Lazear-Rosen tournaments can be found
in Sela (2020) and Akerlof and Holden (2012), respectively.

Most of the papers in this literature assume risk-neutral agents. Risk-aversion makes
more equal prize sharing better from the principal’s perspective, because it reduces the
amount of risk to which the agents are exposed. This was shown by Glazer and Hassin
(1988) for all-pay contests, Fu et al. (2021a) for Tullock contests, and Drugov and Ryvkin
(2021) for Lazear-Rosen tournaments.

Instead of characterizing the optimal prize profile, several papers consider how changes
in the CSF affect equilibrium effort, for given prizes. For Tullock contests, Fu et al.
(2015) show that increasing randomness leads to more entry into the contest, at the cost of
potentially lower effort by the agents who enter. The optimal level of randomness trades
off these effects. For two agents in a Tullock contest, Wang (2010) shows that increasing
randomness can be an optimal response to more heterogeneous agents. Drugov and Ryvkin
(2020a) show that, as a Lazear-Rosen tournament becomes more noisy, equilibrium effort
decreases. Morgan et al. (2022) analyze large Lazear-Rosen tournaments where noise is
a random variable from the location-scale family. They vary the scale parameter (the
randomness of the contest) and find that intermediate levels of randomness are optimal.
Olszewski and Siegel (2019) model college admissions as a large all-pay contest and show
how treating students with similar results equally, in essence making the all-pay contest
more random, can improve outcomes.

The contest theory literature has also developed foundations for various functional forms
of the CSF (for a comprehensive survey, see Jia et al., 2013). Our results contribute to this
literature by characterizing the family of CSFs that can implement the optimal outcome,
with perfect or imperfect observability of effort.

The main contribution of our paper is to study jointly optimal choice of the prize profile
and the CSF. More recently, Zhang (2021) has revisited the contest design problem with
incomplete information. Like us, she also allows the principal to choose both the prize
profile and the CSF. She provides a necessary and sufficient condition for WTA to be
optimal and characterizes the optimal prize profile when this condition fails. The main
difference between our papers is that Zhang (2021) focuses on risk-neutral agents with
perfect observability of effort and private types, while we consider general risk attitudes
and imperfect observability of effort, but without private types.

6 Conclusion

In this paper, we provide a framework which enables us to study the optimal design of
contests without being restricted to a single class of contests or a particular observational
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structure. We provide easily verifiable sufficient conditions for a contest, described by a
prize profile and a contest success function, to be optimal given an arbitrary observational
structure. We apply these conditions to various settings. With perfect observability of
effort, an appropriately chosen nested Tullock contest is optimal. When efforts are imper-
fectly observed, we derive an upper bound on the level of noise such that an all-pay contest
with a cap is optimal. We also show how our tools can be used in cases where the agents
are heterogeneous in their abilities, entry into the contest is costly, and when the agents
have risk-loving preferences.

Our general message is that optimal contests exhibit a relatively small degree of com-
petitiveness, embodied by a minimally competitive prize profile and an imperfectly dis-
criminating CSF. The optimal degree of competition is achieved when a pure-strategy
equilibrium emerges. Reducing competitiveness beyond that point would decrease the ef-
forts that the principal can elicit, and increasing competitiveness would induce wasteful
mixing in equilibrium.

We conclude with a discussion of three important questions for future research. First,
we have focused on the optimal design of contests when the principal’s objective is the
maximization of total effort. However, contest mechanisms are also used for other purposes.
One important application is to incentivize development of innovations. Innovation contests
have been used both by governments (for example the 2012 EU Vaccine Prize) and by
private firms (such as the 2006 Netflix Prize). In innovation contests, the principal is
usually only interested in the best innovation and not in the total effort that the agents
have exerted. For this reason, the literature studying innovation contests usually assumes
that the objective of the principal is to maximize the highest realization of the agents’
outputs.15 In future work, our framework could be extended to this setting by adjusting
the principal’s payoff function appropriately.

Second, we do not examine the number of equilibria in optimal contests. If other
equilibria exist, there is a danger that the agents will coordinate on suboptimal equilibria,
especially if they generate higher payoffs to the agents. We do know that the equilibrium
is unique for some optimal contests. For example, with perfect observability of effort,
both a two-agent Tullock contest and an n-agent all-pay contest with a cap have a unique
equilibrium.16 We do not know whether the equilibrium is unique in the optimal Tullock
contest when there are more than two agents. To the best of our knowledge, the only
paper investigating uniqueness in multi-prize Tullock contests is Fu et al. (2021b), but

15Classical references are Taylor (1995) and Che and Gale (2003), while more recent examples are Erkal
and Xiao (2019), Lemus and Temnyalov (2021) and Benkert and Letina (2020). For a similar objective
in prediction contests see Lemus and Marshall (2021). Another possible objective of contest design is the
selection of best agents. For examples of such selection contests see Meyer (1991), and Fang and Noe
(2022) for a more recent contribution.

16See Ewerhart (2017) and Letina et al. (2020).
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they restrict attention to contests that are less precise than what would be optimal, so we
cannot rely on their results.

Third, we have mostly focused on observational structures for which the principal can
implement the same outcome as in the optimal contest with perfect observability of efforts.
As we have discussed earlier, when the observability of efforts is very limited, implementing
this outcome will no longer be possible. The general characterization of optimal contests
in those circumstances remains an open question. We provide the characterization for a
truth-or-noise observational structure. In this setting, we show that optimal contests still
feature n − 1 equal positive prizes, a single zero prize, and a CSF with an intermediate
degree of competitiveness. However, based on the intuition gained from our results, we
conjecture that there are also observational structures where optimal contests feature more
top-heavy prize structures. This could be the case if the optimal “heat” cannot be generated
via the CSF due to observational noise, but competitiveness can be increased via the other
channel – the prize vector. Understanding which observational structures lead to flat prizes
and which to top-heavy ones is an interesting avenue for future research.
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A Proofs

A.1 Proof of Proposition 1

Fix an arbitrary observational structure (S, η) and suppose that a contest (y, π) with prize
profile y = y∗ satisfies conditions (i) and (ii) in the proposition. We first claim that it
implements the effort profile (e∗, ..., e∗). If agent i exerts effort ei when all other agents
exert e∗, his payoff his

Πi(ei, e
∗
−i | (y, π)) = p−ni (ei, e

∗
−i)u

(
x∗

n− 1

)
− c(ei).

From condition (i) and the definition of e∗ it follows that Πi(e
∗, e∗−i | (y, π)) = 0. From

condition (ii) it follows that

Πi(ei, e
∗
−i | (y, π)) ≤ c(ei)

u(x∗/(n− 1))
u

(
x∗

n− 1

)
− c(ei) = 0

for all ei 6= e∗, which proves the claim.
Now suppose by contradiction that (y, π) is not optimal, i.e., there exists a contest

(ỹ, π̃) that implements some strategy profile σ and

ΠP (σ | (ỹ, π̃)) = Eσ

[
n∑
i=1

ei

]
−

n∑
i=1

ỹi

> ΠP ((e∗, . . . , e∗) | (y, π)) = ne∗ − x∗.

Construct a contest (ỹ, π̂) for a setting with perfect observation of efforts by defining

π̂ki (e) = Eηe
[
π̃ki (s)

]
for all i, k ∈ I and all e ∈ E. It follows that the induced CSF p̂ of the contest (ỹ, π̂)

with perfect observation is identical to the induced CSF p̃ of the contest (ỹ, π̃) with the
original observational structure (S, η). Since the prize profiles are also identical, it follows
that (ỹ, π̂) implements σ under perfect observation and achieves a payoff for the principal
strictly larger than ne∗ − x∗. This is a contradiction to the following Lemma 1 for the
setting with perfect observability of efforts, which is due to Letina et al. (2020) and which
we state without proof.17

Lemma 1 (Letina et al., 2020) Suppose efforts are perfectly observed. Then, a contest
is optimal if and only if it satisfies conditions (i) and (ii):

17The result in Letina et al. (2020) is more general as it allows for a possibly binding budget constraint
of the principal.
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(i) The prizes satisfy y∗n = 0 and
∑n

k=1 y
∗
k = x∗, where x∗ is given by

u′
(

x∗

n− 1

)
= c′

(
c−1

(
n− 1

n
u

(
x∗

n− 1

)))
.

If the agents are risk-averse, then the prize profile is unique and given by

y∗ = (x∗/(n− 1), . . . , x∗/(n− 1), 0).

(ii) The contest implements (e∗, . . . , e∗), where e∗ is given by

e∗ = c−1

(
n− 1

n
u

(
x∗

n− 1

))
.

We conclude that (y, π) must be optimal for the observational structure (S, η). �

A.2 Proof of Proposition 2

Consider a contest with prize profile y∗ = (x∗/(n− 1), ..., x∗/(n− 1), 0) and allocation rule
π of the nested Tullock form (3). We will show that, for an appropriate choice of f , the
effort profile (e∗, . . . , e∗) is an equilibrium. The proof proceeds in three steps. In Step 1, we
derive the agents’ payoff function in the nested contest. Step 2 introduces the specific value
r∗(n) stated in the proposition. In Step 3, we then complete the proof that the contest
indeed implements the desired effort profile.

Step 1. Let p(ei) denote the probability that agent i wins none of the n − 1 positive
prizes, given that all other agents exert effort e∗. Furthermore, let u∗ be the utility derived
from a positive prize. Then, the expected payoff of agent i when all other agents exert e∗

is given by

Πi(ei) = [1− p(ei)]u∗ − c(ei)

=

[
1− (n− 1)!f(e∗)n−1∏n−1

k=1 [f(ei) + (n− k)f(e∗)]

]
u∗ − c(ei)

=

[
1−

n−1∏
k=1

(n− k)f(e∗)

[f(ei) + (n− k)f(e∗)]

]
u∗ − c(ei)

=

[
1−

n−1∏
k=1

(n− k)f(e∗)

[f(ei) + (n− k)f(e∗)]

](
n

n− 1

)
c(e∗)− c(ei).

Now suppose f(ei) = c(ei)
r for some r ≥ 0. It is easy to see that Πi(0) = Πi(e

∗) = 0 for
any r. We will show in the next two steps that Πi(ei) ≤ 0 for all ei when r = r∗(n) =

(n − 1)/(Hn − 1), where Hn =
∑n

k=1 1/k is the n-th harmonic number. This implies that
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(e∗, . . . , e∗) is an equilibrium.
Step 2. Consider any ei > 0 (we already know the value of Πi for ei = 0). To determine

the sign of Πi(ei), we can equivalently examine the sign of

Πi(ei)

[
n− 1

nc(e∗)

]
=

[
1−

n−1∏
k=1

(n− k)c(e∗)r

[c(ei)r + (n− k)c(e∗)r]

]
−
(
n− 1

n

)
c(ei)

c(e∗)
.

Make the change of variables y∗ = c(e∗)r and y = c(ei)
r to obtain

F (y|r) :=

[
1−

n−1∏
k=1

(n− k)y∗

[y + (n− k)y∗]

]
− n− 1

n

(
y

y∗

)1

r
.

After the additional variable substitution x = y∗/y we obtain

F (x|r) :=

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
− n− 1

n

(
1

x

)1

r
.

Showing that F (x|r) ≤ 0 for all x > 0, x 6= 1, is then sufficient to ensure that the contest
with parameter r implements the optimum.

Fix any x and let us look for r(x) such that F (x|r(x)) = 0. Since F is strictly increasing
in r whenever x ∈ (0, 1), we obtain that F (x|r) ≤ 0 for any fixed x ∈ (0, 1) whenever
r ≤ r(x), so r(x) gives an upper bound on the possible values of r. Similarly, since F
is strictly decreasing in r whenever x ∈ (1,∞), we obtain that F (x|r) ≤ 0 for any fixed
x ∈ (1,∞) whenever r ≥ r(x), so r(x) gives a lower bound on the possible values of r.
Thus it is sufficient to find a value r∗ such that r(x) ≥ r∗ for all x ∈ (0, 1) and r(x) ≤ r∗

for all x ∈ (1,∞).
Rewriting the equation F (x|r(x)) = 0, we have

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
=
n− 1

n

(
1

x

) 1

r(x)

log

[
1−

n−1∏
k=1

(n− k)x

[1 + (n− k)x]

]
= log

(
n− 1

n

)
− 1

r(x)
log(x)

1

r(x)
log(x) = log

(
n− 1

n

)
− log

[
1− (n− 1)!xn−1∏n−1

k=1 [1 + (n− k)x]

]
1

r(x)
log(x) = log

[
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

]

35



r(x) =
log(x)

log

[
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

] .

Denote

g(x) =
n− 1

n

∏n−1
k=1 [1 + (n− k)x]∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1

so that

r(x) =
log(x)

log(g(x))
.

Note that g(x) > 0 for any x > 0. We will first show that limx↗1 r(x) = limx↘1 r(x) =

r∗(n) = (n − 1)/(Hn − 1). Note that for x = 1 both the denominator and the numerator
of r(x) equal zero. Hence we use l’Hôpital’s rule. Observe that

(log(g(x)))′ =
g′(x)

g(x)

=

(
∂

∂x

∏n−1
k=1 [1 + (n− k)x]

)(∏n−1
k=1 [1 + (n− k)x]− (n− 1)!xn−1

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

−

(∏n−1
k=1 [1 + (n− k)x]

) ∂

∂x

(∏n−1
k=1 [1 + (n− k)x]− (n− 1)!xn−1

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

=

(∏n−1
k=1 [1 + (n− k)x]

) ∂

∂x
((n− 1)!xn−1)(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

−
((n− 1)!xn−1)

(
∂

∂x

∏n−1
k=1 [1 + (n− k)x]

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

=

(∏n−1
k=1 [1 + (n− k)x]

)
(n− 1) ((n− 1)!xn−2)(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]

−
((n− 1)!xn−1)

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)x]

)
(∏n−1

k=1 [1 + (n− k)x]− (n− 1)!xn−1
)∏n−1

k=1 [1 + (n− k)x]
.

We evaluate this at x = 1, that is,

(log(g(x)))′|x=1 =

(∏n−1
k=1 [1 + (n− k)]

)
(n− 1)(n− 1)!(∏n−1

k=1 [1 + (n− k)]− (n− 1)!
)∏n−1

k=1 [1 + (n− k)]
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−
(n− 1)!

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(∏n−1

k=1 [1 + (n− k)]− (n− 1)!
)∏n−1

k=1 [1 + (n− k)]

=
n!(n− 1)(n− 1)!

(n!− (n− 1)!)n!

−
(n− 1)!

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(n!− (n− 1)!)n!

= 1−

(∑n−1
k=1(n− k)

∏
j 6=k [1 + (n− j)]

)
(n− 1)n!

= 1−
n!

(∑n−1
k=1

n− k
n− k + 1

)
(n− 1)n!

=

n− 1−
(∑n−1

k=1

n− k
n− k + 1

)
n− 1

=
1 +

∑n−1
k=1

n− k + 1

n− k + 1
−
∑n−1

k=1

n− k
n− k + 1

− 1

n− 1

=
1 +

∑n−1
k=1

1

n− k + 1
− 1

n− 1

=
Hn − 1

n− 1
.

Thus we have

lim
x↗1

r(x) = lim
x↘1

r(x) =
1/x

(log(g(x)))′

∣∣∣∣
x=1

=
n− 1

Hn − 1
.

To complete the proof of Proposition 2, it is now sufficient to show that r(x) is weakly
monotonically decreasing on (0, 1) and on (1,∞). We will do this in the next step.

Step 3. To show monotonicity of r(x), we will apply a suitable version of the l’Hôpital
monotone rule. Proposition 1.1 in Pinelis (2002) (together with Corollary 1.2 and Remark
1.3) implies that r(x) = log(x)/ log(g(x)) is weakly decreasing on (0, 1) and (1,∞) if

(log(x))′

(log(g(x)))′
=

g(x)

xg′(x)
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is weakly decreasing.18 We will thus show that(
g(x)

xg′(x)

)′
=

[g′(x)x− g(x)]g′(x)− xg(x)g′′(x)

(xg′(x))2
≤ 0.

For this, it is sufficient to show the following three conditions:

(a) g′(x) > 0,

(b) g′′(x) ≥ 0,

(c) g′(x)x− g(x) ≤ 0.

We will verify these conditions in the following three lemmas. To do this, consider the
function g. We can write

n−1∏
k=1

[1 + (n− k)x] = (n− 1)!xn−1 + an−2x
n−2 + an−3x

n−3 + · · ·+ a1x+ 1

= (n− 1)!xn−1 + γ(x),

where a1, . . . , an−2 are strictly positive coefficients (that depend on n), so that γ is a
polynomial of degree n− 2 which is strictly positive for all x > 0.19 We can then rewrite

g(x) =
n− 1

n

(n− 1)!xn−1 + γ(x)

γ(x)
.

Lemma 2 Condition g′(x) > 0 is satisfied.

Proof. Observe that

g′(x) =
n− 1

n

(n− 1)(n− 1)!xn−2γ(x)− (n− 1)!xn−1γ′(x)

γ(x)2

=
n− 1

n

(n− 1)!xn−2[(n− 1)γ(x)− xγ′(x)]

γ(x)2
,

and, since

(n− 1)γ(x) = (n− 1)an−2x
n−2 + (n− 1)an−3x

n−3 + . . .+ (n− 1)a1x+ n− 1 and

xγ′(x) = (n− 2)an−2x
n−2 + (n− 3)an−3x

n−3 + . . .+ a1x,

it follows that (n− 1)γ(x)− xγ′(x) > 0, which implies that g′(x) > 0. �

18Proposition 1.1 in Pinelis (2002) is applicable because log(x) and log(g(x)) are differentiable on
the respective intervals and limx→1 log(x) = limx→1 log(g(x)) = 0 holds. The remaining prerequisite
(log(g(x)))′ = g′(x)/g(x) > 0 also holds, because g(x) > 0 and g′(x) > 0 according to Lemma 2 below.

19To avoid confusion, the formula should be read as γ(x) = 1 for n = 2 and as γ(x) = a1x for n = 3.
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Lemma 3 Condition g′′(x) ≥ 0 is satisfied.

Proof. Observe that

g′′(x) =
(n− 1)(n− 1)!

n

[
(n− 1)xn−2γ(x)− xn−1γ′(x)

γ(x)2

]′
,

so that g′′(x) ≥ 0 is equivalent to

0 ≤
[

(n− 1)xn−2γ(x)− xn−1γ′(x)

γ(x)2

]′
=

[(n− 2)(n− 1)xn−3γ(x) + (n− 1)xn−2γ′(x)− (n− 1)xn−2γ′(x)− xn−1γ′′(x)]γ(x)2

γ(x)4

− [(n− 1)xn−2γ(x)− xn−1γ′(x)]2γ(x)γ′(x)

γ(x)4

=
[(n− 2)(n− 1)xn−3γ(x)− xn−1γ′′(x)]γ(x)2

γ(x)4

− [(n− 1)xn−2γ(x)− xn−1γ′(x)]2γ(x)γ′(x)

γ(x)4

=
γ(x)xn−3

γ(x)4

[
(n− 2)(n− 1)γ(x)2 − x2γ′′(x)γ(x)− 2(n− 1)xγ(x)γ′(x) + 2x2γ′(x)2

]
.

The expression in the square bracket is a polynomial of degree (2n − 4). We will show
that all coefficients of this polynomial are positive, which implies that the polynomial, and
hence also g′′(x), is non-negative.

Using the auxiliary definitions a0 = 1 and aκ = 0 for κ < 0, the coefficient multiplying
x2n−j in this polynomial, for any 4 ≤ j ≤ 2n, is given by

j−2∑
k=2

(n− 2)(n− 1)an−kan−j+k −
j−2∑
k=2

(n− k)(n− k − 1)an−kan−j+k

−
j−2∑
k=2

2(n− 1)(n− k)an−kan−j+k +

j−2∑
k=2

2(n− k)(n− j + k)an−kan−j+k

=

j−2∑
k=2

(n2 − 3n+ 2)an−kan−j+k −
j−2∑
k=2

(n2 − 2nk − n+ k2 + k)an−kan−j+k

−
j−2∑
k=2

2(n2 − nk − n+ k)an−kan−j+k +

j−2∑
k=2

2(n2 − nj + jk − k2)an−kan−j+k

=

j−2∑
k=2

(2 + 4nk − 3k2 − 3k − 2nj + 2jk)an−kan−j+k.

Let ϕ(n, j, k) = 2 + 4nk − 3k2 − 3k − 2nj + 2jk. We will show in several steps that∑j−2
k=2 ϕ(n, j, k)an−kan−j+k ≥ 0. For n = 2 and n = 3, this condition can easily be verified
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directly. Hence we suppose that n > 3 from now on.
Observe that for any k there is k′ = j − k such that an−kan−j+k = an−k′an−j+k′ . Hence

we first consider the case where j is odd, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k =

j−1
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k.

Since ϕ(n, j, k) + ϕ(n, j, j − k) is an integer, we can think of this expression as a long
sum where each of the terms an−kan−j+k appears exactly |ϕ(n, j, k) + ϕ(n, j, j − k)| times,
added or subtracted depending on the sign of ϕ(n, j, k) + ϕ(n, j, j − k). Now note that∑(j−1)/2

k=2 [ϕ(n, j, k) + ϕ(n, j, j − k)] = 0 holds. This follows because we can write

j−1
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]

=

j−2∑
k=2

ϕ(n, j, k)

=

j−2∑
k=2

(2− 2nj) + (4n− 3 + 2j)

j−2∑
k=2

k − 3

j−2∑
k=2

k2

= (j − 3)(2− 2nj) + (4n− 3 + 2j)
j(j − 3)

2
− 3

(j − 3)(2j2 − 3j + 4)

6

= (j − 3)

(
2− 2nj + 2nj − 3j

2
+ j2 − j2 +

3j

2
− 2

)
= 0.

Thus, for each instance where a term an−k′an−j+k′ is subtracted in the long sum, we can
find a term an−k′′an−j+k′′ which is added. We claim that the respective terms which are
added are weakly larger than the terms which are subtracted. This claim follows once we
show that both ϕ(n, j, k) +ϕ(n, j, j − k) and an−kan−j+k are weakly increasing in k within
the range of the sum. In that case, the terms which are subtracted are those for small k
and the terms which are added are those for large k, and the latter are weakly larger. The
same argument in fact applies when j is even, so that we can write

j−2∑
k=2

ϕ(n, j, k)an−kan−j+k

=

j−2
2∑

k=2

[ϕ(n, j, k) + ϕ(n, j, j − k)]an−kan−j+k + ϕ(n, j, j/2)a2
n−j/2.
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Importantly, for the last term we have

ϕ(n, j, j/2) = 2− 2nj − 3

(
j

2

)2

+
j

2
(4n− 3 + 2j)

= 2− j2 3

4
− j 3

2
+ j2

= 2 + j

(
j

4
− 3

2

)
> 0,

so that the last and largest term a2
n−j/2 = an−j/2an−j/2 is indeed also added.

We first show that ϕ(n, j, k) + ϕ(n, j, j − k) is weakly increasing in k in the relevant
range. We have

ϕ(n, j, k) + ϕ(n, j, j − k)

= (2− 2nj − 3k2 + k(4n− 3 + 2j)) + (2− 2nj − 3(j − k)2 + (j − k)(4n− 3 + 2j))

= 4− 4nj − 3(2k2 + j2 − 2jk) + j(4n− 3 + 2j).

Treating k as a real variable, we obtain

∂

∂k
[ϕ(n, j, k) + ϕ(n, j, j − k)] = −3(4k − 2j)

= −6(2k − j) > 0

for all k < j/2, so the claim follows.
We now show that an−kan−j+k is weakly increasing in k in the relevant range. Formally,

we show that an−kan−j+k ≤ an−k−1an−j+k+1 for any k < j/2. Observe that we can write

a1 =
n−1∑
k1=1

(n− k1),

a2 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n− k2)(n− k1),

...

aj =

n−j∑
kj=1

n−j+1∑
kj−1=kj+1

· · ·
n−1∑

k1=k2+1

(n− kj)(n− kj−1) . . . (n− k1).

Intuitively, each summand in the definition of aj is the product of j different elements
chosen from the set {(n − 1), (n − 2), . . . , 1}, and the nested summation goes over all the
different possibilities in which these j elements can be chosen. Using simplified notation
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for the nested summation, we can thus write (where α, β, λ, and η take the role of the
indices of summation, like k in the expression above):

an−k =
∑

(n− αn−k)(n− αn−k−1) . . . (n− α1),

an−j+k =
∑

(n− βn−j+k)(n− βn−j+k−1) . . . (n− β1),

an−k−1 =
∑

(n− λn−k−1)(n− λn−k−2) . . . (n− λ1),

an−j+k+1 =
∑

(n− ηn−j+k+1)(n− ηn−j+k) . . . (n− η1).

Rewriting the inequality an−kan−j+k ≤ an−k−1an−j+k+1 using this notation, we obtain∑
(n− αn−k)(n− αn−k−1) . . . (n− α1)(n− βn−j+k)(n− βn−j+k−1) . . . (n− β1)

≤
∑

(n− λn−k−1)(n− λn−k−2) . . . (n− λ1)(n− ηn−j+k+1)(n− ηn−j+k) . . . (n− η1).

Observe that each summand of the LHS sum is the product of (n−k)+(n−j+k) = 2n−j
elements, all of them chosen from the set {(n− 1), (n− 2), . . . , 1}. The first n− k elements
are all different from each other, and the last n − j + k elements are all different from
each other. Thus, since n − k > n − j + k when k < j/2, in each summand at most
n− j+ k elements can appear twice. Furthermore, the LHS sum goes over all the different
combinations that satisfy this property. Similarly, each summand of the RHS sum is the
product of (n − k − 1) + (n − j + k + 1) = 2n − j elements, all of them chosen from the
same set {(n− 1), (n− 2), . . . , 1}. The first n− k − 1 elements are all different from each
other, and the last n− j + k+ 1 elements are all different from each other. Thus, (weakly)
more than n− j + k elements can appear twice in these summands.20 Since the RHS sum
goes over all the different combinations that satisfy this property, for each summand on the
LHS there exists an equal summand on the RHS. This shows that the inequality indeed
holds. �

Lemma 4 Condition g′(x)x− g(x) ≤ 0 is satisfied.

Proof. We have

g′(x)x− g(x) =
n− 1

n

[
(n− 1)!xn−1[(n− 1)γ(x)− xγ′(x)]

γ(x)2
− (n− 1)!xn−1 + γ(x)

γ(x)

]
,

20The inequality n−k−1 ≥ n− j+k+1 can be rearranged to k ≤ j/2−1, which follows from k < j/2,
except if j is odd and k = (j − 1)/2. Thus, typically, up to n− j + k+1 elements can appear twice. If j is
odd and k = (j − 1)/2, up to n− k − 1 elements can appear twice, which is identical to n− j + k in that
case.
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and therefore g′(x)x− g(x) ≤ 0 if and only if

0 ≥ (n− 1)!xn−1[(n− 1)γ(x)− xγ′(x)]− (n− 1)!xn−1γ(x)− γ(x)2

= (n− 1)!xn−1(n− 2)γ(x)− (n− 1)!xnγ′(x)− γ(x)2

= (n− 1)![(n− 2)an−2x
2n−3 + (n− 2)an−3x

2n−4 + · · ·+ (n− 2)a1x
n + (n− 2)xn−1

− (n− 2)an−2x
2n−3 − (n− 3)an−3x

2n−4 − · · · − a1x
n]− γ(x)2

= (n− 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · ·+ (n− 3)a1x
n + (n− 2)xn−1]− γ(x)2

= (n− 1)![an−3x
2n−4 + 2an−4x

2n−5 + · · ·+ (n− 3)a1x
n + (n− 2)xn−1]

−
n+1∑
j=4

j−2∑
k=2

an−kan−j+kx
2n−j − ρ,

where ρ ≥ 0 is some positive remainder of γ(x)2. To show g′(x)x− g(x) ≤ 0, it is therefore
sufficient to ignore ρ and show that the overall coefficient on x2n−j in the last expression is
not positive. That is, it is sufficient to show that, for all j ∈ {4, . . . , n+ 1},

(n− 1)!(j − 3)an−j+1 −
j−2∑
k=2

an−kan−j+k ≤ 0.

Observe that the sum has exactly (j − 3) elements. Then, it is sufficient to show that, for
all k ∈ {2, . . . , j − 2},

(n− 1)!an−j+1 ≤ an−kan−j+k. (5)

To demonstrate condition (5), we will first write the values of the coefficients aj in a
different way. Instead of summing over all possibilities in which j different elements from
the set {(n− 1), (n− 2), . . . , 1} can be chosen, we can sum over the n− j − 1 elements not
chosen, and divide the factorial (n− 1)! by the product of these elements. This yields

an−2 =
n−1∑
k1=1

(n− 1)!

n− k1

,

an−3 =
n−2∑
k2=1

n−1∑
k1=k2+1

(n− 1)!

(n− k2)(n− k1)
,

...

an−j =

n−j+1∑
kj−1=1

n−j+2∑
kj−2=kj−1+1

· · ·
n−1∑

k1=k2+1

(n− 1)!

(n− kj−1)(n− kj−2) . . . (n− k1)
,

...
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a1 =
2∑

kn−2=1

3∑
kn−3=kn−2+1

· · ·
n−1∑

k1=k2+1

(n− 1)!

(n− kn−2)(n− kn−3) . . . (n− k1)
.

Rewriting condition (5), we then have

n−j+2∑
λj−2=1

n−j+3∑
λj−3=λj−2+1

· · ·
n−1∑

λ1=λ2+1

((n− 1)!)2

(n− λj−2)(n− λj−3) . . . (n− λ1)

≤

n−k+1∑
αk−1=1

n−k+2∑
αk−2=αk−1+1

· · ·
n−1∑

α1=α2+1

(n− 1)!

(n− αk−1)(n− αk−2) . . . (n− α1)


×

n−j+k+1∑
βj−k−1=1

n−j+k+2∑
βj−k−2=βj−k−1+1

· · ·
n−1∑

β1=β2+1

(n− 1)!

(n− βj−k−1)(n− βj−k−2) . . . (n− β1)

 .
Observe that for each summand on the LHS, the denominator is a product of j−2 different
elements from the set {(n−1), (n−2), . . . , 1}. In fact, the LHS sum goes over all the different
possibilities in which these j−2 elements can be chosen. On the RHS, after multiplication,
the denominator of each summand is a product of (k−1)+(j−k−1) = j−2 elements from
the same set, where replication of some elements may be possible (but is not necessary).
Since the RHS sum goes over all these different possibilities, for each summand on the LHS
there exists an equal summand on the RHS. This shows that the inequality holds. � �

A.3 Comparative Statics of r∗(n)

Claim 1: r∗(n+ 1) > r∗(n). Consider any n ≥ 2. By definition of r∗(n) we have

r∗(n) =
n− 1

Hn − 1
=

(n− 1)(Hn+1 − 1)

(Hn − 1)(Hn+1 − 1)
,

r∗(n+ 1) =
n

Hn+1 − 1
=

n(Hn − 1)

(Hn+1 − 1)(Hn − 1)
.

Since Hn − 1 > 0 for any n ≥ 2, r∗(n+ 1) > r∗(n) holds if and only if

n(Hn − 1)− (n− 1)(Hn+1 − 1) > 0.

We have

n(Hn − 1)− (n− 1)(Hn+1 − 1) = n(Hn −Hn+1) +Hn+1 − 1

= − n

n+ 1
+

n+1∑
k=2

1

k
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=
n+1∑
k=2

(
1

k
− 1

n+ 1

)
> 0.

Claim 2: limn→∞ r
∗(n) =∞.

lim
n→∞

r∗(n) = lim
n→∞

n− 1

Hn − 1

= lim
n→∞

n− (n− 1)

(Hn+1 − 1)− (Hn − 1)

= lim
n→∞

1

1/(n+ 1)

=∞,

where the second equality follows from the Stolz-Cesàro Theorem.

A.4 Proof of Proposition 3

Consider a contest with prize profile y = y∗ and an all-pay allocation rule π with a cap at
s̄ = e∗+ ε. Note that when an agent chooses any effort level ei ≥ e∗, the value of his signal
will be at or above the cap s̄ with probability one. Therefore, when agent i exerts effort ei
while all other agents j 6= i choose effort e∗, the probability that agent i will get one of the
identical positive prizes is given by

p−ni (ei, e
∗
−i) = (1− Pr (ei + εi < e∗ + ε)) · n− 1

n

=
(
1− F−(ε+ e∗ − ei)

)
· n− 1

n
.

Since F−(x) = 0 for all x ≤ ε, we have, for all ei ≥ e∗,

p−ni (ei, e
∗
−i) =

n− 1

n
=

c(e∗)

u (x∗/(n− 1))
≤ c(ei)

u (x∗/(n− 1))
.

Hence condition (i) in Proposition 1 is satisfied, and condition (ii) is satisfied for all ei > e∗.
Furthermore, the inequality condition (4) implies that, for all ei ∈ [0, e∗),

p−ni (ei, e
∗
−i) ≤

n− 1

n
· c(ei)
c(e∗)

=
c(e∗)

u (x∗/(n− 1))
· c(ei)
c(e∗)

=
c(ei)

u (x∗/(n− 1))
.

Therefore, condition (ii) is also satisfied for all ei < e∗. It follows from Proposition 1 that
the proposed contest is optimal. �

45



A.5 Proof of Corollary 1

With the uniform distribution given in the corollary, we have F− = F and condition (4)
becomes

Q(e) ≡ min{e∗ − e,∆}
∆

− 1 +
c(e)

c(e∗)
≥ 0 ∀e ∈ [0, e∗].

Q(e) is continuous, satisfies Q(0) = Q(e∗) = 0, and Q(e) > 0 for all e ∈ (0, e∗ − ∆).
Moreover, we have for all e ∈ (e∗ −∆, e∗),

Q′(e) = − 1

∆
+
c′(e)

c(e∗)
≤ − 1

∆
+
c′(e∗)

c(e∗)
≤ 0,

where the first inequality follows from convexity of c and the second inequality follows from
the assumption ∆ ≤ c(e∗)/c′(e∗). Therefore, on the interval [0, e∗], the function Q(e) is
first positive and then decreases (weakly) towards zero. It follows that Q(e) ≥ 0 holds for
all e ∈ [0, e∗]. �

A.6 Examples of Imperfect Effort Observation

A.6.1 Example 3

Suppose the condition σ2
1 + σ2

2 − 2σ12 ≤ 2/(πβ2) is satisfied. Consider a contest with prize
profile y∗ = (x∗, 0) in which the positive prize x∗ is given to agent 1 if and only if rs1/s2 ≥ 1,
where r ∼ lnN [νr, σ

2
r ] is distributed log-normally with parameters

νr = ν2 − ν1 and σ2
r =

2

πβ2
− (σ2

1 + σ2
2 − 2σ12).

This allows for σ2
r = 0, by which we mean that r is degenerate and takes the value eνr with

probability one. Formally, the the principal sets

π1
1(s) = Pr

[
rs1

s2

≥ 1

]
,

and π1
2(s) = 1 − π1

1(s). Given any effort profile e, the probability that agent 1 wins the
positive prize is then given by

p1
1(e) = Pr

[
rr1e1

r2e2

≥ 1

]
= Pr

[
r2

rr1

≤ e1

e2

]
.

Since r1, r2 and r are all log-normally distributed, it follows that r2/(rr1) is also log-normal,
with location ν = ν2 − ν1 − νr = 0 and scale σ2 = σ2

1 + σ2
2 − σ12 + σ2

r = 2/(πβ2). The cdf
of the log-normal distribution is given by F (x) = Φ ((log x− ν)/σ), where Φ is the cdf of
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the standard normal distribution. Thus we can write

p1
1(e) = Φ

(
log(e1/e2)β

√
π

2

)
.

For the probability that agent 2 wins the prize we obtain

p1
2(e) = 1− p1

1(e) = 1− Φ

(
log(e1/e2)β

√
π

2

)
= Φ

(
− log(e1/e2)β

√
π

2

)
= Φ

(
log(e2/e1)β

√
π

2

)
.

It follows immediately that p1
i (e
∗, e∗) = 1/2, which is condition (i) in Proposition 1. We

will now establish that

p1
i (ei, e

∗) ≤ c(ei)

u(x∗)
=

c(ei)

2c(e∗)
=

1

2

( ei
e∗

)β
,

for all ei 6= e∗, which is condition (ii) in Proposition 1, and where the first equality follows
by definition of e∗. After the change of variables x = log(ei/e

∗)β
√
π/2, this inequality

becomes the requirement that

Φ(x) ≤ 1

2
ex
√

2/π (6)

for all x ∈ R. Inequality (6) is satisfied for x = 0, where LHS and RHS both take a value of
1/2. Furthermore, the LHS function and the RHS function are tangent at x = 0, because
their derivatives are both equal to 1/

√
2π at this point. It then follows immediately that

inequality (6) is also satisfied for all x > 0, because the LHS is strictly concave in x in this
range, while the RHS is strictly convex. We now consider the remaining case where x < 0.
We use the fact that Φ(x) = erfc(−x/

√
2)/2, where

erfc(y) =
2√
π

∫ ∞
y

e−t
2

dt

is the complementary error function (see e.g. Chang, Cosman, and Milstein, 2011). After
the change of variables y = −x/

√
2 we thus need to verify

erfc(y) ≤ e−2y/
√
π (7)

for all y > 0. Inequality (7) is satisfied for y = 0, where LHS and RHS both take a value
of 1. Now observe that the derivative of the LHS with respect to y is given by −2e−y

2
/
√
π,
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while the derivative of the RHS is −2e−2y/
√
π/
√
π. The condition that the former is weakly

smaller than the latter can be rearranged to y ≤ 2/
√
π, which implies that (7) is satisfied for

0 < y ≤ 2/
√
π. For larger values of y, we can use a Chernoff bound for the complementary

error function. Theorem 1 in Chang et al. (2011) implies that

erfc(y) ≤ e−y
2

for all y ≥ 0. The inequality e−y2 ≤ e−2y/
√
π can be rearranged to y ≥ 2/

√
π. This implies

that (7) is satisfied also for y > 2/
√
π.

A.6.2 Example 4

Consider a contest with prize profile y∗ = (x∗, 0) in which the positive prize x∗ is given
to agent 1 if and only if s + r ≥ 0, where r ∼ U [−c(e∗)/c′(e∗), c(e∗)/c′(e∗)] is distributed
uniformly. Formally, the principal sets

π1
1(s) = Pr [r + s ≥ 0] ,

and π1
2(s) = 1−π1

1(s). Observe that c(e∗)/c′(e∗) < e∗ holds due to strict convexity of c and
c(0) = 0. We can then write the probability that agent 1 wins the positive prize, holding
the effort e2 = e∗ fixed, as a piecewise function

p1
1(e1, e

∗) =


1 if e1 > e∗ + c(e∗)

c′(e∗)
,

1
2

+ 1
2
c′(e∗)
c(e∗)

(e1 − e∗) if e∗ − c(e∗)
c′(e∗)

≤ e1 ≤ e∗ + c(e∗)
c′(e∗)

,

0 if e1 < e∗ − c(e∗)
c′(e∗)

.

It follows immediately that p1
1(e∗, e∗) = p1

2(e∗, e∗) = 1/2, which is condition (i) in Propo-
sition 1. We will now establish condition (ii) in Proposition 1, first for agent i = 1. It is
trivially satisfied for any e1 < e∗−c(e∗)/c′(e∗). Next, consider any e1 with e∗−c(e∗)/c′(e∗) ≤
e1 ≤ e∗ + c(e∗)/c′(e∗). Condition (ii) can then be rearranged to

e1 −
c(e1)

c′(e∗)
≤ e∗ − c(e∗)

c′(e∗)
.

The LHS is strictly concave and reaches its unique maximum at e1 = e∗, where it equals the
constant RHS. Hence the inequality holds. The fact that condition (ii) also holds for any
e1 > e∗ + c(e∗)/c′(e∗) follows because it holds for e1 = e∗ + c(e∗)/c′(e∗), from the previous
argument, where we already have p1

1(e1, e
∗) = 1. The argument for agent 2 is symmetric.
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A.7 Proof of Proposition 4

Fix a total prize sum x and define the effort level e(ω, x) = c−1 (ωu(x/(n− 1))(n− 1)/n).
If the principal could use a contest (y, π) with

∑n
k=1 yk = x to implement the pure strategy

profile (e(ω, x), ..., e(ω, x)), her expected payoff would be ne(ω, x)− x. We will first prove
that, under the truth-or-noise observational structure, ne(ω, x) − x constitutes an upper
bound on the principal’s payoff in any contest with a total prize sum x.

Take any contest (y, π) with
∑n

k=1 yk = x. Suppose that this contest implements some
strategy profile σ. Then, implementing σ requires that

Eσ

[
n∑
k=1

pki (e)u(yk)− c(ei)

]
≥ Eσ−i

[
n∑
k=1

pki (0, e−i)

]
u(yk) (8)

for all i ∈ I. Now, recall that with probability 1 − ω, the signal s will be generated by a
probability measure η̂ ∈ ∆E that is independent of effort. Hence, given an effort profile e,
the probability that agent i wins prize yk can be calculated as

pki (e) = ωπki (e) + (1− ω)Eη̂
[
πki (s)

]
. (9)

Using (9) and that y1 ≥ . . . ≥ yn, we obtain the following implication of condition (8):

ω

[
Eσ

[
n∑
k=1

πki (e)u(yk)

]
− u(yn)

]
≥ Eσi [c(ei)], (10)

for all i ∈ I. Summing up (10) over all i ∈ I, we obtain

ω

[
n−1∑
k=1

u(yk)− (n− 1)u(yn)

]
≥

n∑
i=1

Eσi [c(ei)]. (11)

Since
∑n

k=1 yk = x, u is concave and c is convex, (11) further implies

c

(
1

n

n∑
i=1

Eσi [ei]

)
≤ ω

n− 1

n
u

(
x

n− 1

)
= c(e(ω, x)). (12)

Because c is strictly increasing, we finally have

n∑
i=1

Eσi [ei]− x ≤ ne(ω, x)− x.

That is, for a fixed total prize sum x, the expected payoff of the principal can never exceed
ne(ω, x)− x, which is the upper bound that we mentioned before.

By construction, xω is the unique solution to the following payoff-maximization problem
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of the principal:

max
x≥0

ne(ω, x)− x.

Hence, neω − xω constitutes an upper bound for the principal’s payoff in any contest. It is
clear that a contest satisfying the conditions of the proposition will be able to implement
the pure strategy effort profile (eω, . . . , eω) and yields the expected payoff neω − xω to the
principal. Therefore, such a contest must be optimal. �

A.8 Proof of Proposition 5

The optimal prize sum x∗n is defined by the first-order condition

u′
(

x∗n
n− 1

)
= c′

(
c−1

(
n− 1

n
u

(
x∗n
n− 1

)))
. (13)

Holding x∗n/(n − 1) fixed, the LHS of (13) is constant and the RHS is strictly increasing
in n. Furthermore, the LHS is weakly decreasing and the RHS is strictly increasing in
x∗n/(n− 1). It thus follows that x∗n/(n− 1) must be strictly decreasing in n. It also holds
that x∗n/(n− 1) > xFB. By contradiction, from x∗n/(n− 1) ≤ xFB we would obtain

u′(xFB) ≤ u′
(

x∗n
n− 1

)
= c′

(
c−1

(
n− 1

n
u

(
x∗n
n− 1

)))
< c′

(
c−1

(
u

(
x∗n
n− 1

)))
≤ c′

(
c−1
(
u
(
xFB

)))
= u′(xFB).

It thus follows that limn→∞ x
∗
n/(n − 1) exists. We claim that limn→∞ x

∗
n/(n − 1) = xFB.

By contradiction, if limn→∞ x
∗
n/(n−1) = x̄ > xFB, then the LHS of (13) converges to u′(x̄)

and the RHS converges to c′(c−1(u(x̄))). From u′
(
xFB

)
= c′

(
c−1
(
u
(
xFB

)))
together with

x̄ > xFB we conclude that u′ (x̄) < c′ (c−1 (u (x̄))), and hence (13) must be violated for
sufficiently large n. It now follows that

lim
n→∞

e∗n = lim
n→∞

c−1

(
n− 1

n
u

(
x∗n
n− 1

))
= c−1

(
u
(
xFB

))
= eFB.

It also follows that

lim
n→∞

Π∗n = lim
n→∞

(
e∗n −

x∗n
n

)
= lim

n→∞

(
e∗n −

x∗n
n− 1

)
= eFB − xFB = ΠFB,

which completes the proof. �
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A.9 Proof of Proposition 6

We first derive three lemmas which hold under cost heterogeneity for any number n of
agents. Since we assume perfect observability of efforts, we do not make a distinction
between the allocation rule π and the CSF p. We use the notation π throughout.

Lemma 5 For any contest (y, π) that implements a strategy profile σ, there exists a contest
(y, π̂) that implements the pure-strategy profile ē = (ē1, . . . , ēn) where ēi = Eσ [ei] ∀i ∈ I.

Proof. Suppose (y, π) implements σ. Define an allocation rule π̂ as follows:

π̂ki (ẽ) =


Eσ
[
πki (e)

]
if ẽ = ē,

Eσ
[
πki (0, e−j)

]
if ẽj 6= ēj and ẽ` = ē` ∀` 6= j,

πki (ẽ) otherwise,

for all i, k ∈ I. We now show that, in the contest (y, π̂), for each agent i ∈ I it is a best
response to play ēi when the remaining agents are playing ē−i, which implies that (y, π̂)

implements ē. This claim holds because, for any i ∈ I and ∀e′i 6= ēi,

Πi(ē | (y, π̂)) =
n∑
k=1

π̂ki (ē)u(yk)− ci(ēi)

=
n∑
k=1

Eσ
[
πki (e)u(yk)

]
− ci (Eσ [ei])

≥
n∑
k=1

Eσ
[
πki (e)u(yk)

]
− Eσ [ci(ei)]

≥
n∑
k=1

Eσ
[
πki (0, e−i)u(yk)

]
≥

n∑
k=1

Eσ
[
πki (0, e−i)u(yk)

]
− ci(e′i)

=
n∑
k=1

π̂ki (e′i, ē−i)u(yk)− ci(e′i)

= Πi(e
′
i, ē−i | (y, π̂)),

where the first inequality follows the convexity of ci and the second inequality follows from
the fact that (y, π) implements σ. �

Since the principal is indifferent between the mixed-strategy effort profile σ and its pure-
strategy expectation ē, holding fixed the prize profile y, we can without loss of generality
restrict attention to contests which implement a possibly asymmetric pure effort profile.21

21Lemma 5 generalizes Lemma 4 in Letina et al. (2020) to arbitrary costs functions, but restricted to
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For any such contest, we obtain the following result.

Lemma 6 If a contest (y, π) implements a pure-strategy effort profile ē, it holds that

1

n− 1

n∑
i=1

ci(ēi) ≤ u

(
x

n− 1

)
,

where x =
∑n

k=1 yk.

Proof. Since (y, π) implements ē, for each i ∈ I it must hold that

ci(ēi) ≤
n∑
k=1

πki (ēi, ē−i)u(yk)−
n∑
k=1

πki (0, ē−i)u(yk).

Summing over all i ∈ I, we obtain

n∑
i=1

ci(ēi) ≤
n∑
i=1

n∑
k=1

πki (ēi, ē−i)u(yk)−
n∑
i=1

n∑
k=1

πki (0, ē−i)u(yk)

=
n∑
i=1

n∑
k=1

πki (0, ē−1)u(yk)−
n∑
i=1

n∑
k=1

πki (0, ē−i)u(yk)

=
n∑
i=2

n∑
k=1

[
πki (0, ē−1)− πki (0, ē−i)

]
u(yk)

≤
n∑
i=2

n∑
k=1

πki (0, ē−1)u(yk)

≤
n∑
i=2

u

(
n∑
k=1

πki (0, ē−1)yk

)

≤ (n− 1)u

(
x

n− 1

)
where the first equality holds because the sum of all agents’ expected utilities from the
prizes is the same for all effort profiles (due to π being a doubly stochastic matrix for all
e), the third inequality follows from concavity of u, and the fourth inequality follows from
concavity of u together with the fact that

∑n
i=2

∑n
k=1 π

k
i (0, ē−1)yk ≤

∑n
k=1 yk = x. �

Our next result shows that we can restrict attention to contests in which the smallest
prize is zero.

Lemma 7 For any contest (y, π) that implements a pure-strategy effort profile ē, there
exists a contest (ỹ, π̃) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) that also implements ē.

the class of contests, while Letina et al. (2020) consider arbitrary incentive contracts.
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Proof. Suppose that (y, π) implements ē. Then, in particular,

n∑
k=1

πki (ē)u(yk)− ci(ēi) ≥
n∑
k=1

πki (0, ē−i)u(yk) ≥ u(yn) ∀i ∈ I. (14)

Now consider another contest (ỹ, π̃) with ỹ = (ỹ1, . . . , ỹn−1, ỹn) = (y1, . . . , yn−1, 0) and any
allocation rule π̃ such that π̃ki (ē) = πki (ē) for all i, k ∈ I, and π̃ni (ei, ē−i) = 1 whenever
ei 6= ēi. By construction, we have for all i ∈ I,

n∑
k=1

π̃ki (ē)u(ỹk)− ci(ēi) =
n−1∑
k=1

πki (ē)u(yk)− ci(ēi)

≥ [1− πni (ē)]u(yn)

≥ 0

= u(ỹn),

where the first inequality follows from (14). Hence, (ỹ, π̃) also implements ē. �

From now on we consider the special case of n = 2. It follows from Lemma 6 that
any contest (y, π) with y = (x, 0) that implements a pure-strategy effort profile ē must
satisfy c1(ē1) + c2(ē2) ≤ u(x). Since restricting attention to such contests is without loss of
generality by Lemmas 5 and 7, the problem

max
x,e1,e2≥0

e1 + e2 − x s.t. c1(e1) + c2(e2) ≤ u(x)

describes an upper bound on the payoff that the principal can achieve. Obviously, any
solution (x∗, e∗1, e

∗
2) to this problem must satisfy the constraint with equality, and it must

be strictly positive. We complete the proof by showing that the contest described in the
proposition achieves that bound, by implementing the effort profile (e∗1, e

∗
2) using prize x∗.

Lemma 8 Suppose n = 2. The contest (y∗, π∗) implements the effort profile (e∗1, e
∗
2).

Proof. Consider a tuple (x∗, e∗1, e
∗
2) as described in the proposition. Using a Tullock CSF

with individual-specific impact functions fi(ei) = ci(ei)
ri/ci(e

∗
i )
ri−1 for any ri > 1, it follows

that the probability that agent i wins the prize x∗ when the effort profile is e = (ei, ej) is

π1
i (ei, ej) =

ci(ei)
ri/ci(e

∗
i )
ri−1

ci(ei)ri/ci(e∗i )
ri−1 + cj(ej)rj/cj(e∗j)

rj−1

=
ci(ei)

ricj(e
∗
j)
rj−1

ci(ei)ricj(e∗j)
rj−1 + cj(ej)rjci(e∗i )

ri−1

= 1− cj(ej)
rjci(e

∗
i )
ri−1

ci(ei)ricj(e∗j)
rj−1 + cj(ej)rjci(e∗i )

ri−1
.
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To simplify notation, let ci = ci(ei) and c∗i = ci(e
∗
i ). Then we can write agent i’s optimiza-

tion problem as maxci≥0 U(ci, c
∗
j), where Ui(ci, c∗j) = π1

i (ci, c
∗
j)u(x∗) − ci. We obtain after

some simplifications

∂Ui(ci, c
∗
j)

∂ci
= ri

[
(c∗i )

ri−1c∗jc
ri−1
i

(crii + (c∗i )
ri−1c∗j)

2

]
u(x∗)− 1 (15)

and

∂2Ui(ci, c
∗
j)

∂c2
i

=
riu(x∗)(c∗i )

ri−1c∗j
(crii + (c∗i )

ri−1c∗j)
3

[
(ri − 1)cri−2

i (crii + (c∗i )
ri−1c∗j)− 2ric

2(ri−1)
i

]
. (16)

We immediately obtain Ui(0, c
∗
j) = 0 and ∂Ui(0, c

∗
j)/∂ci < 0, so that ci = 0 is a local

maximum. Using that c∗i + c∗j = u(x∗), it also follows immediately that Ui(c∗i , c∗j) = 0. Now
let ri = 1 + c∗i /c

∗
j ≡ r∗i . From (15) we obtain

∂Ui(c
∗
i , c
∗
j)

∂ci
=

(
c∗i + c∗j
c∗j

)[
(c∗i )

2(r∗i−1)c∗j
(c∗i )

2(r∗i−1)(c∗i + c∗j)
2

]
(c∗i + c∗j)− 1 = 0, (17)

so that the first-order condition is satisfied at ci = c∗i . By (16), the sign of ∂2Ui/∂c
2
i is equal

to the sign of (ri− 1)cri−2
i (crii + (c∗i )

ri−1c∗j)− 2ric
2(ri−1)
i , which for ri = r∗i can be rearranged

to

c
r∗i−2
i (c∗i )

r∗i − (r∗i + 1)c
2(r∗i−1)
i . (18)

Using (18) we thus obtain that ∂2Ui/∂c
2
i ≤ 0 if and only if

c
r∗i
i ≥

(
1

r∗i + 1

)
(c∗i )

r∗i .

It follows that ci = c∗i is also a local maximum. Furthermore, the sign of ∂2Ui/∂c
2
i changes

only once as ci increases from 0 to∞, and hence both ci = 0 and ci = c∗i are global maxima
of the function Ui(ci, c

∗
j). Therefore, c∗i is a best response of agent i to c∗j , which implies

that the contest implements (e∗1, e
∗
2). � �

A.10 Proof of Proposition 7

Since we assume perfect observability of efforts, we do not make a distinction between the
allocation rule π and the CSF p. We use the notation π throughout. We first state some
additional properties that hold for any given profile of effort cost functions (c1, . . . , cn). By
Lemmas 5 and 7, we can restrict attention to the implementation of pure-strategy effort
profiles by contests with yn = 0. This allows us to show that the principal’s optimization
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problem has a solution.

Lemma 9 An optimal contest exists.

Proof. When optimizing over contests that implement a pure-strategy effort profile e
and have yn = 0, it is without loss of generality to assume that an agent who deviates
unilaterally from e obtains yn = 0 with probability one, which is the harshest possible
punishment. Thus constraint (IC-A) can be written as

n∑
k=1

πki (e)u(yk)− ci(ei) ≥ 0 ∀i ∈ I. (19)

The principal therefore maximizes
∑n

i=1 ei −
∑n

i=1 yi by choosing e = (e1, . . . , en) ∈ Rn
+,

y = (y1, . . . , yn) ∈ Rn
+ and π(e) = (πki (e))i,k∈I ∈ [0, 1]n

2 for the given e, subject to (19)
and the constraints that yn = 0 and π(e) is a doubly stochastic matrix. The allocation
probabilities after multilateral deviations from e can be chosen arbitrarily. Using notation
x =

∑n
k=1 yk, constraint (19) implies ei ≤ c−1

i (u(x)) for all i ∈ I. This implies
∑n

i=1 ei −∑n
i=1 yi ≤

∑n
i=1 c

−1
i (u(x)) − x. Since u is weakly concave and each ci is strictly convex

with limei→∞ c
′
i(ei) = ∞, there exists X > 0 such that

∑n
i=1 c

−1
i (u(x)) − x < 0 whenever

x > X, so that a contest with x > X cannot be optimal. It is therefore without loss to
impose yi ∈ [0, X] and ei ∈ [0, c−1

i (u(X))] for all i ∈ I. Continuity of u and each ci then
implies that the constraint set is compact. Since the principal’s objective is continuous, a
solution exists. �

The next result provides a lower bound on maximal profits. Fix any T > 0 and define

Π = max
x∈[0,T ]

[
c−1

1 (u(x))− x
]
,

which exists and satisfies Π > 0 due to our assumptions on c1 and u.

Lemma 10 There exists a contest (y, π) that implements a pure-strategy effort profile e
such that ΠP (e | (y, π)) = Π.

Proof. Let x∗ = arg maxx∈[0,T ]

[
c−1

1 (u(x))− x
]
and e∗1 = c−1

1 (u(x∗)). Consider a contest
with prize profile y = (x∗, 0, . . . , 0). If the effort profile e is such that e1 = e∗1, then agent 1

receives the prize x∗ while all other agents receive a zero prize. For any other effort profile,
agent 2 receives x∗ and all other agents receive a zero prize. It follows that this contest
implements (e∗1, 0, . . . , 0) and yields the payoff e∗1 − x∗ = Π to the principal. �

The next result states that it is without loss to focus on the implementation of effort
profiles that are not too heterogeneous relative to the cost functions. The proof proceeds
like the proof of Lemma 5 in Letina et al. (2020) and is therefore omitted.
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Lemma 11 For any contest (y, π) that implements a pure-strategy effort profile ē such that

1

n

n∑
i=1

ci(ēi) > ck

(
1

n

n∑
i=1

ēi

)
∀k ∈ I,

there exists a contest (y′, π′) that implements the pure-strategy effort profile ê given by
ê1 = . . . = ên = 1

n

∑n
i=1 ēi, and yields the same expected payoff to the principal.

Now consider a sequence (cm1 , . . . , c
m
n )m∈N such that (cm1 , . . . , c

m
n )→ (c, . . . , c) uniformly.

Let (ēm, (ym, πm))m∈N be a corresponding sequence of optimal solutions, i.e., (ym, πm) im-
plements ēm = (ēm1 , . . . , ē

m
n ) and solves the principal’s problem when the cost functions are

(cm1 , . . . , c
m
n ). Given the above results, we can assume that ΠP (ēm | (ym, πm)) ≥ Πm > 0,

where Πm = maxx∈[0,T ] [(cm1 )−1(u(x))− x]. We can also assume that

1

n

n∑
i=1

cmi (ēmi ) ≤ max
k∈I

cmk

(
1

n

n∑
i=1

ēmi

)
. (20)

We will write êm = (1/n)
∑n

i=1 ē
m
i for the average effort and xm =

∑n
i=1 y

m
i for the total

budget of the contest at step m in the sequence. We first show that the total budget must
be bounded.

Lemma 12 There exists B ∈ R such that xm ≤ B for all m.

Proof. Since (ym, πm) implements ēm, we must have

ΠP (ēm | (ym, πm)) ≤

[
n∑
i=1

(cmi )−1(u(xm))

]
− xm.

Using Theorem 2 in Barvinek, Daler, and Francu (1991), it can be shown that (cmi )−1

converges uniformly to c−1 for all i.22 Thus, for every ε > 0 there exists m′ ∈ N such that
for all m ≥ m′ and all i,

|(cmi )−1(u(xm))− c−1(u(xm))| < ε/n,

which implies
∑n

i=1 |(cmi )−1(u(xm))− c−1(u(xm))| < ε, and therefore∣∣∣∣∣
(

n∑
i=1

(cmi )−1(u(xm))

)
− xm −

(
nc−1(u(xm))− xm

)∣∣∣∣∣ < ε. (21)

Since u is weakly concave and c is strictly convex with limei→∞ c
′(ei) = ∞, there exists

B̃ > 0 such that nc−1(u(x)) − x < −ε for all x > B̃. Therefore, if for any m ≥ m′ it was
22The theorem is directly applicable and implies our claim after we extend the functions c and cmi to R

by defining cmi (e) = c(e) = e for all e < 0.
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the case that xm > B̃, inequality (21) would imply that (
∑n

i=1(cmi )−1(u(xm))) − xm < 0,
which in turn implies ΠP (ēm | (ym, πm)) < 0. This is in contradiction to the assumption
that ΠP (ēm | (ym, πm)) ≥ Πm > 0. Hence we know that xm ≤ B̃ for all m ≥ m′. Now
simply let B = max{x1, . . . , xm

′−1, B̃}. �

For the remainder of the proof, we fix any B ∈ R such that xm ≤ B for all m.

Lemma 13 The sequence

κm = max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi )

converges to zero as m→∞.

Proof. For every m ∈ N, let

δm = max
k∈I

cmk (êm)− 1

n

n∑
i=1

cmi (ēmi ) and ψm = max
i∈I

cmi (ēmi )−max
k∈I

cmk (êm),

and hence κm = δm + ψm. We will show that limm→∞ δ
m = limm→∞ ψ

m = 0, which
immediately implies that limm→∞ κ

m = 0. For the sequence δm, note that

δm =

[
max
k∈I

cmk (êm)− c(êm)

]
+

[
1

n

n∑
i=1

c(ēmi )− 1

n

n∑
i=1

cmi (ēmi )

]
+

[
c(êm)− 1

n

n∑
i=1

c(ēmi )

]
.

By uniform convergence of cmi to c, ∀i ∈ I, we have

lim
m→∞

(cmi (êm)− c(êm)) = 0 and lim
m→∞

(cmi (ēmi )− c(ēmi )) = 0 ∀i ∈ I, (22)

and thus

lim
m→∞

max
k∈I

(cmk (êm)− c(êm)) = 0 and lim
m→∞

(
1

n

n∑
i=1

cmi (ēmi )− 1

n

n∑
i=1

c(ēmi )

)
= 0.

In addition, by convexity of c we have c(êm) − 1
n

∑n
i=1 c(ē

m
i ) ≤ 0 for all m ∈ N, and by

condition (20) we have δm ≥ 0 for all m ∈ N. Hence, we must also have

lim
m→∞

(
c(êm)− 1

n

n∑
i=1

c(ēmi )

)
= 0, (23)

as otherwise for some large m we would have δm < 0, a contradiction. This concludes that
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limm→∞ δ
m = 0. For the sequence ψm, we have

ψm = max
k∈I

(c(êm)− cmk (êm)) + max
i∈I

[cmi (ēmi )− c(ēmi ) + c(ēmi )− c(êm)] .

Hence, by (22), a sufficient condition for limm→∞ ψ
m = 0 is

lim
m→∞

(c(ēmi )− c(êm)) = 0 ∀i ∈ I. (24)

To establish (24), we first claim that there exists ẽ > 0 such that ēmi ∈ [0, ẽ] for all i ∈ I
and all m ∈ N. The fact that (ym, πm) implements ēm implies cmi (ēmi ) ≤ u(B) for all i ∈ I.
Now fix any ũ > u(B). By uniform convergence of each cmi to c it follows that there exists
m′ ∈ N such that for all m ≥ m′,

|cmi (ēmi )− c(ēmi )| ≤ ũ− u(B) ∀i ∈ I,

which then implies c(ēmi ) ≤ ũ and therefore ēmi ≤ c−1(ũ). Now just define ẽ as the maximum
among c−1(ũ) and the finite number of values ēmi for all i ∈ I and m < m′. We next claim
that limm→∞(ēmi − êm) = 0 holds for all i ∈ I. By contradiction, assume there exists
i ∈ I and ε > 0 such that for all m′ ∈ N there exists m ≥ m′ so that |ēmi − êm| ≥ ε.
Define Ei = {(e1, . . . , en) ∈ [0, ẽ]n | |ei − 1

n

∑n
j=1 ej| ≥ ε}. The set Ei is compact and the

function χ(e) = 1
n

∑n
j=1 c(ej) − c

(
1
n

∑n
j=1 ej

)
is continuous on Ei, with χ(e) > 0 due to

strict convexity of c and ε > 0. Hence ε̃ = mine∈Ei
χ(e) exists and satisfies ε̃ > 0. We

have thus shown that there exists ε̃ > 0 such that for all m′ ∈ N there exists m ≥ m′ so
that χ(ēm) = −(c(êm) − 1

n

∑n
i=1 c(ē

m
i )) ≥ ε̃, contradicting (23). Finally, (24) now follows

immediately because ēmi ∈ [0, ẽ] and êm ∈ [0, ẽ] and c is continuous on [0, ẽ]. �

Next we show that the sum of effort costs is bounded away from zero for large m.

Lemma 14 There exist m′ ∈ N and c > 0 such that
∑n

i=1 c
m
i (ēmi ) ≥ c for all m ≥ m′.

Proof. Let Πm = maxx∈[0,T ] Πm
1 (x) with Πm

1 (x) = (cm1 )−1(u(x)) − x be the lower profit
bound for the cost functions (cm1 , . . . , c

m
n ) as defined earlier. Hence ΠP (ēm | (ym, πm)) ≥ Πm

holds for all m ∈ N. Similarly, let Π∞ = maxx∈[0,T ] Π1(x) with Π1(x) = c−1(u(x)) − x be
the bound when the cost functions are (c, . . . , c). We first claim that limm→∞Πm = Π∞.
The claim follows immediately once we show that Πm

1 converges uniformly to Π1 on [0, T ].
Again using Theorem 2 in Barvinek et al. (1991), it can be shown that (cm1 )−1 converges
uniformly to c−1 on [0, u(T )]. Thus for every ε > 0 there exists m′′ ∈ N such that for all
m ≥ m′′,

|Πm
1 (x)− Π1(x)| = |(cm1 )−1(u(x))− c−1(u(x))| < ε
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for all x ∈ [0, T ], which establishes uniform convergence. Now fix any ε with 0 < ε < Π∞

and define Π̃ = Π∞ − ε > 0. Hence there exists m′′′ ∈ N such that for all m ≥ m′′′,

n∑
i=1

ēmi ≥ ΠP (ēm | (ym, πm)) ≥ Πm ≥ Π̃ > 0.

Define

cm = min
e∈E

n∑
i=1

cmi (ei) s.t.
n∑
i=1

ei = Π̃.

We then obtain that
∑n

i=1 c
m
i (ēmi ) ≥ cm for all m ≥ m′′′. Similarly, define

c∞ = min
e∈E

n∑
i=1

c(ei) s.t.
n∑
i=1

ei = Π̃,

noting that c∞ > 0. It again follows from uniform convergence of cmi to c for each i ∈ I
that limm→∞ c

m = c∞. Fix any ε′ such that 0 < ε′ < c∞ and define c = c∞ − ε′ > 0. It
follows that there exists m′ ∈ N such that for all m ≥ m′,

n∑
i=1

cmi (ēmi ) ≥ cm ≥ c,

which completes the proof. �

We can now combine Lemmas 13 and 14 to obtain the following result.

Lemma 15 There exists m ∈ N such that for all m ≥ m,

max
k∈I

cmk (ēmk ) ≤ 1

n− 1

n∑
i=1

cmi (ēmi ).

Proof. By Lemma 14, there exist m′ ∈ N and c > 0 such that
∑n

i=1 c
m
i (ēmi ) ≥ c for all

m ≥ m′. In addition, from the limiting statement about κm in Lemma 13 we can conclude
that there exists m′′ ∈ N such that for all m ≥ m′′,

max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi ) ≤ c

n(n− 1)
.

Thus for all m ≥ m = max{m′,m′′} we obtain

max
k∈I

cmk (ēmk )− 1

n− 1

n∑
i=1

cmi (ēmi ) = max
k∈I

cmk (ēmk )− 1

n

n∑
i=1

cmi (ēmi )− 1

n(n− 1)

n∑
i=1

cmi (ēmi )

≤ c

n(n− 1)
− 1

n(n− 1)

n∑
i=1

cmi (ēmi )

≤ 0. �
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Now consider any fixed m ≥ m, with m from Lemma 15. Combined with Lemma 6 we
can conclude that the contest (ym, πm) and the effort profile ēm satisfy

max
k∈I

cmk (ēmk ) ≤ u

(
xm

n− 1

)
. (25)

We now show that ēm can also be implemented in a contest with the same prize budget
and n− 1 identical prizes, given the cost functions (cm1 , . . . , c

m
n ).

Lemma 16 Fix any m ≥ m. There exists a contest (y, π) which implements ēm and has
the prize profile y = (xm/(n− 1), . . . , xm/(n− 1), 0).

Proof. We construct the allocation rule π as follows. If e = ēm, the zero prize is given to
agent i with probability pi ≥ 0, while all other agents obtain one of the identical positive
prizes. Below we will determine the values pi such that

∑n
i=1 pi = 1. If e = (ei, ē

m
−i)

with ei 6= ēmi for some i ∈ I, the deviating agent i obtains the zero prize for sure and all
other agents obtain one of the identical positive prizes. For all other effort profiles e, the
allocation of the prizes can be chosen arbitrarily. First define p̃i implicitly by

(1− p̃i)u
(

xm

n− 1

)
= cmi (ēmi ).

Since the LHS of this equation describes the expected payoff of agent i who expects to obtain
the zero prize with probability p̃i, it follows that the contest (y, π) indeed implements ēm

if pi ≤ p̃i holds for all i ∈ I. The fact that cmi (ēmi ) ≤ u(xm/(n − 1)) for all i ∈ I due to
(25) guarantees p̃i ≥ 0. Lemma 6 also implies that

n∑
i=1

cmi (ēmi ) =
n∑
i=1

(1− p̃i)u
(

xm

n− 1

)
=

(
n−

n∑
i=1

p̃i

)
u

(
xm

n− 1

)
≤ (n− 1)u

(
xm

n− 1

)
,

which guarantees that
∑n

i=1 p̃i ≥ 1. It is therefore possible to find equilibrium punishment
probabilities pi such that 0 ≤ pi ≤ p̃i ∀i ∈ I and

∑n
i=1 pi = 1. �

In sum, whenever m ≥ m, we can replace the optimal contest (ym, πm) by a contest
with n− 1 identical prizes that implements the same effort profile and generates the same
payoff for the principal. �

A.11 Proof of Proposition 8

Step 1. Take any contest ((ym, πm))m=1,...,n that implements some (z̄, e1, . . . , en). Fix any
m ∈ {2, ..., n}. Let ȳm = 1

m−1

∑m−1
k=1 y

m
k and let êm be such that

m− 1

m
u(ȳm) +

1

m
u(ymm)− c(êm) =

1

m

m∑
k=1

u(ymk )− c(em).
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It follows that êm ≥ em, because by concavity we have

m− 1

m
u(ȳm) =

m− 1

m
u

(
1

m− 1

m−1∑
k=1

ymk

)
≥ 1

m

m−1∑
k=1

u(ymk ).

We now modify (if at all) the contest when there arem active agents. The modified prize
profile ŷm is given by ŷm1 = . . . = ŷmm−1 = ȳm and ŷmm = ymm. The (anonymous) allocation
rule π̂m is as follows. If all agents exert êm, then ŷmm is randomly and uniformly allocated.
If an agent unilaterally deviates to some e′ 6= êm, then he gets ŷmm with probability one.
For all other effort profiles, the allocation rule can be chosen arbitrarily.

We claim that the modified contest implements (z̄, e1, ..., êm, ...en). To see this, note
first that

Πm
(
êm, êm−i | (ŷm, π̂m)

)
=
m− 1

m
u(ȳm) +

1

m
u(ymm)− c(êm)

= Πm
(
em, em−i | (ym, πm)

)
≥ u(ymm)

≥ Πm
(
e, êm−i | (ŷm, π̂m)

)
for all e 6= êm, where the second equality holds by construction and the first inequality
follows because (ym, πm) implements (em, ..., em). Hence, (ŷm, π̂m) implements (êm, ..., êm).
By construction, the expected payoff of the agents remains unchanged (irrespective of the
number of entrants). Therefore, the condition defining the cutoff z̄ is also unaffected.

The principal gives away the same prize sum and collects weakly higher efforts from
the agents in the modified contest with m entrants. Therefore, the expected payoff of the
principal must be weakly higher. Repeating the argument for all m establishes property
(i) of the proposition.

Step 2. Now consider the contest constructed in Step 1, where each prize profile satisfies
ŷm1 = . . . = ŷmm−1 = ȳm ≥ ŷmm, which has the above defined allocation rule, and which
implements (z̄, ê1, . . . , ên). Suppose that for some m ∈ {2, ..., n} we have

Πm
(
êm, êm−i | (ŷm, π̂m)

)
=
m− 1

m
u(ȳm) +

1

m
u(ŷmm)− c(êm) > u(ŷmm),

which requires ŷmm < ȳm. Let ymL = ŷmm + ε and ymH = ȳm − ε/(m − 1) and choose ε such
that u(ymL ) = Πm

(
êm, êm−i | (ŷm, π̂m)

)
. It is easy to see that such ε exists and ymL ≤ ymH still

holds. Further, let ẽm be such that

m− 1

m
u(ymH ) +

1

m
u(ymL )− c(ẽm) = Πm

(
êm, êm−i | (ŷm, π̂m)

)
.

Again by concavity, we have ẽm ≥ êm.
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We now modify the contest when there are m active agents. The modified prize profile
ỹm is given by ỹm1 = . . . = ỹmm−1 = ymH and ỹmm = ymL . The allocation rule π̃m is as follows. If
all agents exert ẽm, then ỹmm is randomly and uniformly allocated. If an agent unilaterally
deviates to some e′ 6= ẽm, then he gets ỹmm with probability one. For all other effort profiles,
the allocation rule can be chosen arbitrarily. Now observe that

Πm
(
ẽm, ẽm−i | (ỹm, π̃m)

)
=
m− 1

m
u(ymH ) +

1

m
u(ymL )− c(ẽm)

= Πm
(
êm, êm−i | (ŷm, π̂m)

)
= u(ymL )

≥ Πm
(
e, ẽm−i | (ỹm, π̃m)

)
for all e 6= ẽm, which implies that (ỹm, π̃m) implements (ẽm, ..., ẽm). The rest of the proof
is analogous to Step 1. �

A.12 Proof of Proposition 9

We first prove three intermediate results that apply to the case of perfect observability of
efforts. Thereby, we do not make a distinction between the allocation rule π and the CSF p
but use the notation π. We prove the proposition for an arbitrary observational structure
afterwards.

Lemma 17 Suppose that efforts are perfectly observable. For any contest (y, π) that im-
plements a strategy profile σ such that there exists some j ∈ I for which σj is not a Dirac
measure, there exists a contest (y, π̂) that implements a pure-strategy profile ē and yields a
strictly higher expected payoff to the principal.

Proof. We will show that there exists an ε > 0 and an allocation rule π̂ such that (y, π̂)

implements the pure-strategy profile ē = (ē1, . . . , ēn), where ēi = Eσ[ei] for all agents i 6= j

and ēj = Eσ[ej] + ε for agent j. We construct the allocation rule π̂ by letting

π̂ki (ẽ) =


Eσ
[
πki (e)

]
if ẽ = ē,

Eσ
[
πki (0, e−j)

]
if ẽj 6= ēj and ẽ` = ē` ∀` 6= j,

πki (ẽ) otherwise,

for all i, k ∈ I.
We now show that, in the contest (y, π̂), there exists an ε > 0 such that for each agent

i ∈ I it is a best response to play ēi when the remaining agents are playing ē−i, which
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implies that (y, π̂) implements ē. This claim holds for each agent i 6= j because, ∀e′i 6= ēi,

Πi(ē | (y, π̂)) =
n∑
k=1

π̂ki (ē)u(yk)− c(ēi)

=
n∑
k=1

Eσ
[
πki (e)u(yk)

]
− c (Eσ [ei])

≥
n∑
k=1

Eσ
[
πki (e)u(yk)

]
− Eσ [c(ei)]

≥
n∑
k=1

Eσ
[
πki (0, e−i)u(yk)

]
≥

n∑
k=1

Eσ
[
πki (0, e−i)u(yk)

]
− c(e′i)

=
n∑
k=1

π̂ki (e′i, ē−i)u(yk)− c(e′i)

= Πi((e
′
i, ē−i) | (y, π̂)),

where the first inequality follows the convexity of c and the second inequality follows from
the fact that (y, π) implements σ. For agent j, c (Eσ[ej]) < Eσ[c(ej)] since c is strictly
convex and σj is not a Dirac measure. Then, there exists some ε > 0 such that

n∑
k=1

Eσ
[
πkj (e)u(yk)

]
− c (Eσ [ej] + ε) ≥

n∑
k=1

Eσ
[
πkj (e)u(yk)

]
− Eσ[c(ej)]

from which, analogously to the argument above, it follows that for all e′j 6= ēj we have
Πj(ē | (y, π̂)) ≥ Πj(e

′
j, ē−j | (y, π̂)). Thus, (y, π̂) implements ē, resulting in a strictly higher

payoff for the principal. �

Lemma 18 Suppose that efforts are perfectly observable. For any contest (y, π) that im-
plements a pure-strategy profile ē and in which one of the following conditions is satisfied:

(i) y2 > 0, or

(ii) ēi 6= ēj for some i, j ∈ I,

there exists a contest (ỹ, π̃) with ỹ2 = 0 that implements a symmetric pure-strategy profile
(ẽ, . . . , ẽ) and yields a strictly higher expected payoff to the principal.

Proof. Starting from (y, π) that implements ē, we construct (ỹ, π̃) as follows. Let the prize
profile be ỹ = (ỹ1, . . . , ỹn) with ỹ1 =

∑n
i=1 yi ≡ x and ỹ2 = . . . = ỹn = 0. Let ex be the

solution to 1
n
u(x) − c(ex) = 0, as defined in the body of the text. Let π̃ be such that the

prize ỹ1 = x is allocated randomly and uniformly among the agents when e = (ex, . . . , ex).
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If some agent i unilaterally deviates, then agent i receives the prize ỹn = 0 for sure, while
the prize ỹ1 is allocated randomly among the non-deviating agents. For all other effort
profiles, the allocation of the prizes can be chosen arbitrarily. It follows immediately from
the definition of ex that this contest implements (ex, . . . , ex).

We now claim that
∑n

i=1 ēi < nex, so that the principal’s payoff is strictly higher with
(ỹ, π̃) than with (y, π). Using the fact that (y, π) implements ē, we have, ∀i ∈ I,

Πi(ē | (y, π)) =
n∑
k=1

π̂ki (ē)u(yk)− c(ēi) ≥ 0.

Summing over all agents, we obtain

n∑
i=1

n∑
k=1

πki (ē)u(yk)−
n∑
i=1

c(ēi) =
n∑
k=1

u(yk)−
n∑
i=1

c(ēi) ≥ 0.

Now assume by contradiction that
∑n

i=1 ēi ≥ nex. Then, we have

c(ex) ≤ c

(
1

n

n∑
i=1

ēi

)
≤ 1

n

n∑
i=1

c(ēi), (26)

where the second inequality follows from strict convexity of c, and the inequality is strict
whenever the original contest (y, π) satisfied condition (ii) in the lemma. In addition, strict
convexity of u together with u(0) = 0 implies that

n∑
k=1

u(yk) =
n∑
k=1

u
(yk
x
· x
)
≤

n∑
k=1

yk
x
· u(x) = u(x), (27)

and the inequality is strict whenever the original contest (y, π) satisfied condition (i) in the
lemma. Taken together, we have

n∑
k=1

u(yk)−
n∑
i=1

c(ēi) < u (x)− nc(ex) = 0,

because either condition (i) or (ii) in the lemma is satisfied, which is a contradiction. �

Lemma 19 Suppose that efforts are perfectly observable. For any fixed prize sum x > 0, a
contest (y, π) maximizes the principal’s payoff if and only if the prize profile is y = (x, 0, ...0)

and the allocation rule satisfies, for each i ∈ I,

(i) π1
i (e

x, ex−i) = 1
n
, and

(ii) π1
i (ei, e

x
−i) ≤

c(ei)
u(x)

, ∀ei 6= ex.
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Proof. It follows from Lemma 18 that we can constrain attention to contests with a prize
profile given by y1 = x and y2 = . . . = yn = 0 and which implement a symmetric pure-
strategy effort profile (as any contest violating these conditions cannot be optimal). Any
such contest must satisfy u(x)− nc(ē) ≥ 0, where ē is the implemented individual level of
effort, as otherwise unilateral deviations to zero effort would be profitable. Hence, for a
given prize sum x > 0, the maximization problem

max
ē

nē− x s.t. u(x)− nc(ē) ≥ 0

describes an upper bound for the principal’s payoff. The unique solution to this problem
is ē = ex.

The contest described in the proposition implements (ex, ..., ex) and hence achieves the
upper bound and is optimal, which proves the if-statement. Any contest not satisfying
conditions (i) and (ii) in the proposition does not implement (ex, ..., ex) and thus does not
achieve the upper bound, which proves the only-if-statement. �

We now prove the proposition. Fix an arbitrary observational structure (S, η) and a
total budget x > 0 and consider a contest (y, π) as described in the proposition. It clearly
implements the effort profile (ex, ..., ex). Suppose by contradiction that (y, π) is not optimal,
i.e., there exists a contest (ỹ, π̃) with the same total prize budget x and which implements
some strategy profile σ such that

ΠP (σ | (ỹ, π̃)) = Eσ

[
n∑
i=1

ei

]
− x

> ΠP ((ex, . . . , ex) | (y, π)) = nex − x.

Construct a contest (ỹ, π̂) for the setting with perfect observation of efforts by defining

π̂ki (e) = Eηe
[
π̃ki (s)

]
for all i, k ∈ I and all e ∈ E. It follows that the induced CSF p̂ of the contest (ỹ, π̂)

with perfect observation is identical to the induced CSF p̃ of the contest (ỹ, π̃) with the
original observational structure (S, η). Since the prize profiles are also identical, it follows
that (ỹ, π̂) implements σ under perfect observation and achieves a payoff for the principal
strictly larger than nex − x. This is a contradiction to Lemma 19. �
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